Powers of a Power 4
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 4 questions completed
Questions:
- 1
- 2
- 3
- 4
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- Answered
- Review
-
Question 1 of 4
1. Question
Simplify`((m^2)/(3x^3))^2`Hint
Help VideoCorrect
Exceptional!
Incorrect
Power of a Power
$${(a^\color{#007DDC}{m})}^{\color{#9a00c7}{n}}=a^{\color{#007DDC}{m} \times \color{#9a00c7}{n}}$$Simplify the expression by using the Power of a Power.$${\left(\frac{m^{\color{#007DDC}{2}}}{3x^{\color{#007DDC}{3}}}\right)}^\color{#9a00c7}{2}$$ `=` $$\frac{(m^{\color{#007DDC}{2}})^{\color{#9a00c7}{2}}}{(3x^{\color{#007DDC}{3}})^{\color{#9a00c7}{2}}}$$ `=` $$\frac{m^{\color{#007DDC}{2} \times \color{#9a00c7}{2}}}{3^{\color{#9a00c7}{2}}x^{\color{#007DDC}{3} \times \color{#9a00c7}{2}}}$$ `=` `(m^4)/(9x^6)` `(m^4)/(9x^6)` -
Question 2 of 4
2. Question
Simplify`((2a^3)/(5x))^2`Hint
Help VideoCorrect
Fantastic!
Incorrect
Power of a Power
$${(a^\color{#007DDC}{m})}^{\color{#9a00c7}{n}}=a^{\color{#007DDC}{m} \times \color{#9a00c7}{n}}$$Simplify the expression by using the Power of a Power.$${\left(\frac{2a^{\color{#007DDC}{3}}}{5x}\right)}^\color{#9a00c7}{2}$$ `=` $$\frac{(2a^{\color{#007DDC}{3}})^{\color{#9a00c7}{2}}}{(5x)^{\color{#9a00c7}{2}}}$$ `=` $$\frac{2^{\color{#9a00c7}{2}}a^{\color{#007DDC}{3} \times \color{#9a00c7}{2}}}{5^{\color{#9a00c7}{2}}x^{\color{#9a00c7}{2}}}$$ `=` `(4a^6)/(25x^2)` `(4a^6)/(25x^2)` -
Question 3 of 4
3. Question
Simplify`((2x^3)^2)/(8x^8-:2x^2)`- (1)
Hint
Help VideoCorrect
Keep Going!
Incorrect
Power of a Power
$${(a^\color{#007DDC}{m})}^{\color{#9a00c7}{n}}=a^{\color{#007DDC}{m} \times \color{#9a00c7}{n}}$$First, use the Quotient of Powers to simplify the denominator.$$\frac{(2x^3)^2}{8\color{#00880A}{x}^8 \div 2\color{#00880A}{x}^2}$$ `=` $$\frac{(2x^3)^2}{(8 \div 2) \times {\color{#00880A}{x}^{8-2}}}$$ `=` $$\frac{(2x^3)^2}{4 \times {\color{#00880A}{x}^6}}$$ `=` `((2x^3)^2)/(4x^6)` Simplify the expression further by using the Power of a Power.$$\frac{(2x^{\color{#007DDC}{3}})^{\color{#9a00c7}{2}}}{4x^6}$$ `=` $$\frac{2^{\color{#9a00c7}{2}}x^{\color{#007DDC}{3} \times \color{#9a00c7}{2}}}{4x^6}$$ `=` `(4x^6)/(4x^6)` `=` `1` `1` -
Question 4 of 4
4. Question
Simplify`((asqrtb)/(c^(-2)))^2-:((a^2 c^3)/b)^4`Hint
Help VideoCorrect
Excellent!
Incorrect
Power of a Power
$${(a^\color{#007DDC}{m})}^{\color{#9a00c7}{n}}=a^{\color{#007DDC}{m} \times \color{#9a00c7}{n}}$$The equation can be written as a multiplication by getting the reciprocal of the divisor.`((asqrtb)/(c^(-2)))^2-:((a^2 c^3)/b)^4` `=` `((asqrtb)/(c^(-2)))^2xx(b/(a^2 c^3))^4` Use Power of a Power to separate the numerator and denominator.$$\left(\frac{a \sqrt{b}}{c^{\color{#007DDC}{-2}}}\right)^{\color{#9a00c7}{2}} \times \left(\frac{b}{a^2c^3}\right)^4$$ `=` $$\frac{a^{\color{#9a00c7}{2}} b^{\color{#007DDC}{\frac{1}{2}} \times \color{#9a00c7}{2}}}{c^{\color{#007DDC}{-2} \times \color{#9a00c7}{2}}} \times \left(\frac{b}{a^2c^3}\right)^4$$ `sqrtb=b^(1/2)` `=` $$\frac{a^2b^1}{c^{-4}} \times \left(\frac{b}{a^{\color{#007DDC}{2}}c^{\color{#007DDC}{3}}}\right)^{\color{#9a00c7}{4}}$$ `=` $$\frac{a^2b}{c^{-4}} \times \frac{b^{\color{#9a00c7}{4}}}{a^{\color{#007DDC}{2} \times \color{#9a00c7}{4}}c^{\color{#007DDC}{3} \times \color{#9a00c7}{4}}}$$ `=` `(a^2 b)/(c^(-4)) xx (b^4)/(a^8 c^(12))` Finally, use both Product and Quotient of Powers to simplify the equation further.$$\frac{a^2\color{#00880A}{b}}{c^{-4}} \times \frac{\color{#00880A}{b}^4}{a^8 c^{12}}$$ `=` $$\frac{a^2\color{#00880A}{b}^{1+4}}{c^{-4} \times a^8 c^{12}}$$ `=` $$\frac{a^2 b^5}{\color{#00880A}{c}^{-4} \times a^8 \color{#00880A}{c}^{12}}$$ `=` $$\frac{a^2 b^5}{a^8 \color{#00880A}{c}^{-4+12}}$$ `=` $$\frac{a^2 b^5 \div \color{#CC0000}{a^2}}{a^8 c^8 \div \color{#CC0000}{a^2}}$$ Divide the numerator and the denominator by `a^2` `=` $$\frac{\color{#00880A}{a}^{2-2} b^5}{\color{#00880A}{a}^{8-2} c^8}$$ `=` $$\frac{b^5}{\color{#00880A}{a}^6 c^8}$$ `(b^5)/(a^6 c^8)`
Quizzes
- Exponent Notation 1
- Exponent Notation 2
- Exponent Notation 3
- Multiply Exponents (Product Rule) 1
- Multiply Exponents (Product Rule) 2
- Multiply Exponents (Product Rule) 3
- Multiply Exponents (Product Rule) 4
- Divide Exponents (Quotient Rule) 1
- Divide Exponents (Quotient Rule) 2
- Powers of a Power 1
- Powers of a Power 2
- Powers of a Power 3
- Powers of a Power 4
- Zero Powers 1
- Zero Powers 2
- Negative Exponents 1
- Negative Exponents 2
- Negative Exponents 3