Topics
>
Geometry>
Trigonometry>
Intro to Trigonometric Ratios (SOH CAH TOA)>
Intro to Trigonometric Ratios (SOH CAH TOA) 1Intro to Trigonometric Ratios (SOH CAH TOA) 1
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 5 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- Answered
- Review
-
Question 1 of 5
1. Question
Name the following sides with respect to angle `theta` in the triangle below.The sides can either be `AB`, `AC` or `BC`.-
`(i)` Opposite: (BC, CB)`(ii)` Adjacent: (AB, BA)`(iii)` Hypotenuse: (AC, CA)
Hint
Help VideoCorrect
Nice Job!
Incorrect
We can easily identify the hypotenuse as it is simply the side opposite the right angle.Therefore, the hypotenuse is side `AC`.Next, the opposite side is exactly the side opposite the angle `theta`.Therefore, the opposite side is side `BC`.Finally, the adjacent side is exactly the side next to the angle `theta`, but not the hypotenuse.Therefore, the adjacent side is side `AB`.`(i)` Opposite: `BC``(ii)` Adjacent: `AB``(iii)` Hypotenuse: `AC` -
-
Question 2 of 5
2. Question
Find the following trigonometric ratios using the given triangle.Write fractions in the format “a/b”-
`(i) sin theta=` (5/13)`(ii) cos theta=` (12/13)`(iii) tan theta=` (5/12)
Hint
Help VideoCorrect
Fantastic!
Incorrect
Trigonometric Ratios (SOHCAHTOA) for Right Angled Triangles
Sin Ratio (SOH)
$$\sin=\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$Cos Ratio (CAH)
$$\cos=\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$Tan Ratio (TOA)
$$\tan=\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$First, label the values in the triangle.$$\color{#004ec4}{\text{opposite}=5}$$$$\color{#00880a}{\text{adjacent}=12}$$$$\color{#e85e00}{\text{hypotenuse}=13}$$Now, solve each Trigonometric Ratio using the given formulas.`sin theta` `=` $$\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$ `sin` ratio `=` $$\frac{\color{#004ec4}{5}}{\color{#e85e00}{13}}$$ Plug in the values `cos theta` `=` $$\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$ `cos` ratio `=` $$\frac{\color{#00880a}{12}}{\color{#e85e00}{13}}$$ Plug in the values `tan theta` `=` $$\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$ `tan` ratio `=` $$\frac{\color{#004ec4}{5}}{\color{#00880a}{12}}$$ Plug in the values `(i) sin theta=5/13``(ii) cos theta=12/13``(iii) tan theta=5/12` -
-
Question 3 of 5
3. Question
Find the following trigonometric ratios using the given triangle.Write fractions in the format “a/b”-
`(i) sin theta=` (15/17)`(ii) cos theta=` (8/17)`(iii) tan theta=` (15/8)
Hint
Help VideoCorrect
Well Done!
Incorrect
Trigonometric Ratios (SOHCAHTOA) for Right Angled Triangles
Sin Ratio (SOH)
$$\sin=\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$Cos Ratio (CAH)
$$\cos=\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$Tan Ratio (TOA)
$$\tan=\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$First, label the values in the triangle.$$\color{#004ec4}{\text{opposite}=15}$$$$\color{#00880a}{\text{adjacent}=8}$$$$\color{#e85e00}{\text{hypotenuse}=17}$$Now, solve each Trigonometric Ratio using the given formulas.`sin theta` `=` $$\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$ `sin` ratio `=` $$\frac{\color{#004ec4}{15}}{\color{#e85e00}{17}}$$ Plug in the values `cos theta` `=` $$\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$ `cos` ratio `=` $$\frac{\color{#00880a}{8}}{\color{#e85e00}{17}}$$ Plug in the values `tan theta` `=` $$\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$ `tan` ratio `=` $$\frac{\color{#004ec4}{15}}{\color{#00880a}{8}}$$ Plug in the values `(i) sin theta=15/17``(ii) cos theta=8/17``(iii) tan theta=15/8` -
-
Question 4 of 5
4. Question
Find the following trigonometric ratios using the given triangle.Write fractions in the format “a/b”-
`(i) sin theta=` (60/61)`(ii) cos theta=` (11/61)`(iii) tan theta=` (60/11)
Hint
Help VideoCorrect
Excellent!
Incorrect
Trigonometric Ratios (SOHCAHTOA) for Right Angled Triangles
Sin Ratio (SOH)
$$\sin=\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$Cos Ratio (CAH)
$$\cos=\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$Tan Ratio (TOA)
$$\tan=\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$First, label the values in the triangle.$$\color{#004ec4}{\text{opposite}=60}$$$$\color{#00880a}{\text{adjacent}=11}$$$$\color{#e85e00}{\text{hypotenuse}=61}$$Now, solve each Trigonometric Ratio using the given formulas.`sin theta` `=` $$\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$ `sin` ratio `=` $$\frac{\color{#004ec4}{60}}{\color{#e85e00}{61}}$$ Plug in the values `cos theta` `=` $$\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$ `cos` ratio `=` $$\frac{\color{#00880a}{11}}{\color{#e85e00}{61}}$$ Plug in the values `tan theta` `=` $$\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$ `tan` ratio `=` $$\frac{\color{#004ec4}{60}}{\color{#00880a}{11}}$$ Plug in the values `(i) sin theta=60/61``(ii) cos theta=11/61``(iii) tan theta=60/11` -
-
Question 5 of 5
5. Question
Find which angle in this triangle, `A`, `B` or `C`, has the following trigonometric ratios:-
`(i) tan theta=5/12:` (A, a)`(ii) sin theta=12/13:` (B, b)
Hint
Help VideoCorrect
Good Job!
Incorrect
Trigonometric Ratios (SOHCAHTOA) for Right Angled Triangles
Sin Ratio (SOH)
$$\sin=\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$Cos Ratio (CAH)
$$\cos=\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$Tan Ratio (TOA)
$$\tan=\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$Label the triangle according to each given trigonometric ratio to find the angles.$$\tan\theta=\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}=\frac{\color{#004ec4}{5}}{\color{#00880a}{12}}$$The angle opposite of `5` and adjacent to `12` is `A`$$\sin\theta=\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}=\frac{\color{#004ec4}{12}}{\color{#e85e00}{13}}$$The angle opposite of `12` and has a hypotenuse of `13` is `B``(i) tantheta=5/12:A``(ii) sintheta=12/13:B` -
Quizzes
- Intro to Trigonometric Ratios (SOH CAH TOA) 1
- Intro to Trigonometric Ratios (SOH CAH TOA) 2
- Round Angles (Degrees, Minutes, Seconds)
- Evaluate Trig Expressions using a Calculator 1
- Evaluate Trig Expressions using a Calculator 2
- Trig Ratios: Solving for a Side 1
- Trig Ratios: Solving for a Side 2
- Trig Ratios: Solving for an Angle
- Angles of Elevation and Depression
- Trig Ratios Word Problems: Solving for a Side
- Trig Ratios Word Problems: Solving for an Angle
- Area of Non-Right Angled Triangles 1
- Area of Non-Right Angled Triangles 2
- Law of Sines: Solving for a Side
- Law of Sines: Solving for an Angle
- Law of Cosines: Solving for a Side
- Law of Cosines: Solving for an Angle
- Trigonometry Word Problems 1
- Trigonometry Word Problems 2
- Trigonometry Mixed Review: Part 1 (1)
- Trigonometry Mixed Review: Part 1 (2)
- Trigonometry Mixed Review: Part 1 (3)
- Trigonometry Mixed Review: Part 1 (4)
- Trigonometry Mixed Review: Part 2 (1)
- Trigonometry Mixed Review: Part 2 (2)
- Trigonometry Mixed Review: Part 2 (3)