Topics
>
Geometry>
Trigonometry>
Law of Sines: Solving for a Side>
Law of Sines: Solving for a SideLaw of Sines: Solving for a Side
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 6 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
- 6
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- 6
- Answered
- Review
-
Question 1 of 6
1. Question
Find `x`Round your answer to `1` decimal place- `x=` (23.7)`m`
Hint
Help VideoCorrect
Fantastic!
Incorrect
Sine Law
$$\frac{\color{#007DDC}{a}}{\sin\color{#007DDC}{A}}=\frac{\color{#00880A}{b}}{\sin\color{#00880A}{B}}=\frac{\color{#9a00c7}{c}}{\sin\color{#9a00c7}{C}}$$where:
`a` is the side opposite angle `A`
`b` is the side opposite angle `B`
`c` is the side opposite angle `C`When to use the Sine Law (for non-right angled triangles)
a) Given 2 sides and 1 angle to find the other angleorb) Given 2 angles 1 side to find the other sideFirst, label the triangle according to the Sine Law.Substitute the three known values to the Sine Law to find the fourth missing value.From labelling the triangle, we know that the known values are those with labels `a, A, b` and `B`.`a=x``A=51°``b=29 m``B=72°`$$\frac{\color{#007DDC}{a}}{\sin\color{#007DDC}{A}}$$ `=` $$\frac{\color{#00880A}{b}}{\sin\color{#00880A}{B}}$$ $$\frac{\color{#007DDC}{x}}{\sin\color{#007DDC}{51°}}$$ `=` $$\frac{\color{#00880A}{29}}{\sin\color{#00880A}{72°}}$$ Substitute the values `xtimessin72°` `=` `29timessin51°` Cross multiply `xtimessin72°``dividesin72°` `=` `29timessin51°``dividesin72°` Divide both sides by `sin72°` `x` `=` `(29timessin51°)/(sin72°)` `x` `=` `22.53723/0.9510565` Use the calculator to simplify `x` `=` `23.697` `x` `=` `23.7 m` Rounded off to `1` decimal place `23.7 m` -
Question 2 of 6
2. Question
Find `x`Round your answer to `1` decimal place- `x=` (141.4)`cm`
Hint
Help VideoCorrect
Well Done!
Incorrect
Sine Law
$$\frac{\color{#007DDC}{a}}{\sin\color{#007DDC}{A}}=\frac{\color{#00880A}{b}}{\sin\color{#00880A}{B}}=\frac{\color{#9a00c7}{c}}{\sin\color{#9a00c7}{C}}$$where:
`a` is the side opposite angle `A`
`b` is the side opposite angle `B`
`c` is the side opposite angle `C`When to use the Sine Law (for non-right angled triangles)
a) Given 2 sides and 1 angle to find the other angleorb) Given 2 angles 1 side to find the other sideFirst, label the triangle according to the Sine Law.Substitute the three known values to the Sine Law to find the fourth missing value.From labelling the triangle, we know that the known values are those with labels `a, A, c` and `C`.`a=x``A=63°``c=130 cm``C=55°`$$\frac{\color{#007DDC}{a}}{\sin\color{#007DDC}{A}}$$ `=` $$\frac{\color{#9a00c7}{c}}{\sin\color{#9a00c7}{C}}$$ $$\frac{\color{#007DDC}{x}}{\sin\color{#007DDC}{63°}}$$ `=` $$\frac{\color{#9a00c7}{130}}{\sin\color{#9a00c7}{55°}}$$ Substitute the values `xtimessin55°` `=` `130timessin63°` Cross multiply `xtimessin55°``dividesin55°` `=` `130timessin63°``dividesin55°` Divide both sides by `sin55°` `x` `=` `(130timessin63°)/(sin55°)` `x` `=` `115.830848/0.81915204` Use the calculator to simplify `x` `=` `141.4033` `x` `=` `141.4 cm` Rounded off to `1` decimal place `141.4 cm` -
Question 3 of 6
3. Question
Find `c`Round your answer to `1` decimal place- `c=` (80.9)`m`
Hint
Help VideoCorrect
Correct!
Incorrect
Sine Law
$$\frac{\color{#007DDC}{a}}{\sin\color{#007DDC}{A}}=\frac{\color{#00880A}{b}}{\sin\color{#00880A}{B}}=\frac{\color{#9a00c7}{c}}{\sin\color{#9a00c7}{C}}$$where:
`a` is the side opposite angle `A`
`b` is the side opposite angle `B`
`c` is the side opposite angle `C`When to use the Sine Law (for non-right angled triangles)
a) Given 2 sides and 1 angle to find the other angleorb) Given 2 angles 1 side to find the other sideFirst, label the triangle according to the Sine Law.Substitute the three known values to the Sine Law to find the fourth missing value.From labelling the triangle, we know that the known values are those with labels `b, B, c` and `C`.`b=62.3 m``B=50°``c=c``C=84°`$$\frac{\color{#00880A}{b}}{\sin\color{#00880A}{B}}$$ `=` $$\frac{\color{#9a00c7}{c}}{\sin\color{#9a00c7}{C}}$$ $$\frac{\color{#00880A}{62.3}}{\sin\color{#00880A}{50°}}$$ `=` $$\frac{\color{#9a00c7}{c}}{\sin\color{#9a00c7}{84°}}$$ Substitute the values `ctimessin50°` `=` `62.3timessin84°` Cross multiply `ctimessin50°``dividesin50°` `=` `62.3timessin84°``dividesin50°` Divide both sides by `sin50°` `c` `=` `(62.3timessin84°)/(sin50°)` `c` `=` `61.958714/0.76604444` Use the calculator to simplify `c` `=` `80.88` `c` `=` `80.9 m` Rounded off to `1` decimal place `80.9 m` -
Question 4 of 6
4. Question
Find `b`Round your answer to `2` decimal places- `b=` (85.07)`cm`
Hint
Help VideoCorrect
Great Work!
Incorrect
Sine Law
$$\frac{\color{#007DDC}{a}}{\sin\color{#007DDC}{A}}=\frac{\color{#00880A}{b}}{\sin\color{#00880A}{B}}=\frac{\color{#9a00c7}{c}}{\sin\color{#9a00c7}{C}}$$where:
`a` is the side opposite angle `A`
`b` is the side opposite angle `B`
`c` is the side opposite angle `C`When to use the Sine Law (for non-right angled triangles)
a) Given 2 sides and 1 angle to find the other angleorb) Given 2 angles 1 side to find the other sideFirst, label the triangle according to the Sine Law.Substitute the three known values to the Sine Law to find the fourth missing value.From labelling the triangle, we know that the known values are those with labels `b, B, c` and `C`.`b=b``B=116°``c=40 cm``C=25°`$$\frac{\color{#00880A}{b}}{\sin\color{#00880A}{B}}$$ `=` $$\frac{\color{#9a00c7}{c}}{\sin\color{#9a00c7}{C}}$$ $$\frac{\color{#00880A}{b}}{\sin\color{#00880A}{116°}}$$ `=` $$\frac{\color{#9a00c7}{40}}{\sin\color{#9a00c7}{25°}}$$ Substitute the values `btimessin25°` `=` `40timessin116°` Cross multiply `btimessin25°``dividesin25°` `=` `40timessin116°``dividesin25°` Divide both sides by `sin25°` `b` `=` `(40timessin116°)/(sin25°)` `b` `=` `35.95176/0.422618` Use the calculator to simplify `b` `=` `85.069` `b` `=` `85.07 cm` Rounded off to `2` decimal places `85.07 cm` -
Question 5 of 6
5. Question
Find `LN`Round your answer to `1` decimal place- `LN=` (251.5)`cm`
Hint
Help VideoCorrect
Fantastic!
Incorrect
Sine Law
$$\frac{\color{#007DDC}{a}}{\sin\color{#007DDC}{A}}=\frac{\color{#00880A}{b}}{\sin\color{#00880A}{B}}=\frac{\color{#9a00c7}{c}}{\sin\color{#9a00c7}{C}}$$where:
`a` is the side opposite angle `A`
`b` is the side opposite angle `B`
`c` is the side opposite angle `C`When to use the Sine Law (for non-right angled triangles)
a) Given 2 sides and 1 angle to find the other angleorb) Given 2 angles 1 side to find the other sideFirst, label the triangle according to the Sine Law.Since the length of side `n` is given, it’s best to use it instead of `m`.Solve for angle `N` knowing that the sum of all interior angles in a triangle is `180°`.`N` `=` `180°-(133°+32°)` `=` `180°-165°` `=` `15°` Substitute `m, M, n` and `N` to the Sine Law to find `m` or `LN`.`m=m` or `LN``M=133°``n=89 cm``N=15°`$$\frac{\color{#00880A}{m}}{\sin\color{#00880A}{M}}$$ `=` $$\frac{\color{#9a00c7}{n}}{\sin\color{#9a00c7}{N}}$$ $$\frac{\color{#00880A}{m}}{\sin\color{#00880A}{133°}}$$ `=` $$\frac{\color{#9a00c7}{89}}{\sin\color{#9a00c7}{15°}}$$ Substitute the values `mtimessin15°` `=` `89timessin133°` Cross multiply `mtimessin15°``dividesin15°` `=` `89timessin133°``dividesin15°` Divide both sides by `sin15°` `m` `=` `(89timessin133°)/(sin15°)` `m` `=` `65.09048/0.258819` Use the calculator to simplify `m` `=` `251.49` `m` or `LN` `=` `251.5 cm` Rounded off to `1` decimal place `251.5 cm` -
Question 6 of 6
6. Question
Find `AC`Round your answer to `1` decimal place- `AC=` (35.8)`km`
Hint
Help VideoCorrect
Excellent!
Incorrect
Sine Law
$$\frac{\color{#007DDC}{a}}{\sin\color{#007DDC}{A}}=\frac{\color{#00880A}{b}}{\sin\color{#00880A}{B}}=\frac{\color{#9a00c7}{c}}{\sin\color{#9a00c7}{C}}$$where:
`a` is the side opposite angle `A`
`b` is the side opposite angle `B`
`c` is the side opposite angle `C`When to use the Sine Law (for non-right angled triangles)
a) Given 2 sides and 1 angle to find the other angleorb) Given 2 angles 1 side to find the other sideFirst, label the triangle according to the Sine Law.To solve for side `AC` or `b`, angle `B` must be calculated.Solve for angle `B` knowing that the sum of all interior angles in a triangle is `180°`.`B` `=` `180°-(76°+24°)` `=` `180°-100°` `=` `80°` Substitute `b, B, c` and `C` to the Sine Law to find `b` or `AC`.`b=AC``B=80°``c=14.8 km``C=24°`$$\frac{\color{#00880A}{b}}{\sin\color{#00880A}{B}}$$ `=` $$\frac{\color{#9a00c7}{c}}{\sin\color{#9a00c7}{C}}$$ $$\frac{\color{#00880A}{AC}}{\sin\color{#00880A}{80°}}$$ `=` $$\frac{\color{#9a00c7}{14.8}}{\sin\color{#9a00c7}{24°}}$$ Substitute the values `ACtimessin24°` `=` `14.8timessin80°` Cross multiply `ACtimessin24°``dividesin24°` `=` `14.8timessin80°``dividesin24°` Divide both sides by `sin24°` `AC` `=` `(14.8timessin80°)/(sin24°)` `AC` `=` `(14.8times0.9848)/(0.4067366)` Use the calculator to simplify `AC` `=` `35.83438` `AC` `=` `35.8 km` Rounded off to `1` decimal place `35.8 km`
Quizzes
- Intro to Trigonometric Ratios (SOH CAH TOA) 1
- Intro to Trigonometric Ratios (SOH CAH TOA) 2
- Round Angles (Degrees, Minutes, Seconds)
- Evaluate Trig Expressions using a Calculator 1
- Evaluate Trig Expressions using a Calculator 2
- Trig Ratios: Solving for a Side 1
- Trig Ratios: Solving for a Side 2
- Trig Ratios: Solving for an Angle
- Angles of Elevation and Depression
- Trig Ratios Word Problems: Solving for a Side
- Trig Ratios Word Problems: Solving for an Angle
- Area of Non-Right Angled Triangles 1
- Area of Non-Right Angled Triangles 2
- Law of Sines: Solving for a Side
- Law of Sines: Solving for an Angle
- Law of Cosines: Solving for a Side
- Law of Cosines: Solving for an Angle
- Trigonometry Word Problems 1
- Trigonometry Word Problems 2
- Trigonometry Mixed Review: Part 1 (1)
- Trigonometry Mixed Review: Part 1 (2)
- Trigonometry Mixed Review: Part 1 (3)
- Trigonometry Mixed Review: Part 1 (4)
- Trigonometry Mixed Review: Part 2 (1)
- Trigonometry Mixed Review: Part 2 (2)
- Trigonometry Mixed Review: Part 2 (3)