Trigonometry Word Problems 2
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 4 questions completed
Questions:
- 1
- 2
- 3
- 4
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- Answered
- Review
-
Question 1 of 4
1. Question
Noah and Amelia are standing `91 m` apart and observe a drone at an angle of elevation of `63°` and `42°` respectively. Find the distance `(ND)` between Noah `(N)` and the drone `(D)` to the nearest metre.- `\text(ND) =` (170)`m`
Hint
Help VideoCorrect
Fantastic!
Incorrect
Sine Rule
$$\frac{\color{#007DDC}{a}}{\sin\color{#007DDC}{A}}=\frac{\color{#00880A}{b}}{\sin\color{#00880A}{B}}=\frac{\color{#9a00c7}{c}}{\sin\color{#9a00c7}{C}}$$where:
`a` is the side opposite angle `A`
`b` is the side opposite angle `B`
`c` is the side opposite angle `C`When to use the Sine Rule
a) Given 2 sides and 1 angle to find the other angleorb) Given 2 angles 1 side to find the other sideNotice that the scenario creates an obtuse triangle. Let `ND` be the distance of the two poles on the ground.Identify the two other angles in the triangle.First angle:Remember that a straight line measures `180°`. Subtract `63°` from `180°` to find the measure of the larger angle.`180-63` `=` `117°` Second angle:Remember that the sum of the interior angles in a triangle is `180°`. Subtract `42°` and `117°` from `180°` to find the measure of the smaller angle.`180-42-117` `=` `21°` Since `1` side and `2` angles are now known, use the Sine Rule to find the missing side.Side `1=ND`Angle `1=42°`Side `2=91 m`Angle `2=21°`$$\frac{\color{#007DDC}{a}}{\sin\color{#007DDC}{A}}$$ `=` $$\frac{\color{#00880A}{b}}{\sin\color{#00880A}{B}}$$ $$\frac{\color{#007DDC}{ND}}{\sin\color{#007DDC}{42°}}$$ `=` $$\frac{\color{#00880A}{91}}{\sin\color{#00880A}{21°}}$$ Substitute the values `NDtimessin21°` `=` `91timessin42°` Cross multiply `NDtimessin21°``dividesin21°` `=` `91timessin42°``dividesin21°` Divide both sides by `sin21°` `ND` `=` `(91timessin42°)/(sin21°)` `ND` `=` `(91times0.6691306)/0.3583679` Use the calculator to simplify `ND` `=` `169.991164` `ND` `=` `170 m` Rounded off to the nearest metre `170 m` -
Question 2 of 4
2. Question
Noah and Amelia are standing `91 m` apart and observe a drone at an angle of elevation of `63°` and `42°` respectively. Find the height `(h)` of the drone to the nearest metre.- `h=` (151)`m`
Hint
Help VideoCorrect
Excellent!
Incorrect
Trigonometric Ratios (SOHCAHTOA)
Sin Ratio (SOH)
$$\sin=\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$Cos Ratio (CAH)
$$\cos=\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$Tan Ratio (TOA)
$$\tan=\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$Calculator Buttons to Use
`sin` `=` Sine function`cos` `=` Cosine function`tan` `=` Tangent functionDMS or `° ‘ ‘ ‘` `=` Degree/Minute/Second`=` `=` Equal functionNotice that the scenario creates two right triangles. Focus on the smaller one and label it in reference to the given angle.$$\color{#004ec4}{\text{opposite}}=\color{#004ec4}{h}$$$$\color{#e85e00}{\text{hypotenuse}}=\color{#e85e00}{170}$$Since we now have the opposite and hypotenuse values, we can use the `sin` ratio to find `h`.`sin63°` `=` $$\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$ `sin63°` `=` $$\frac{\color{#004ec4}{h}}{\color{#e85e00}{170}}$$ `170xx``sin63°` `=` `h/170``xx170` Multiply both sides by `170` `170sin63°` `=` `h` `h` `=` `170sin63°` Simplify this further by evaluating `sin63°` using the calculator:`1.` Press `sin``2.` Press `63``3.` Press `=`The result will be: `0.89100652`Continue solving for `h`.`sin63°=0.89100652``h` `=` `170sin63°` `=` `170times0.89100652` `=` `151.47` `=` `151 m` Rounded off to the nearest metre `151 m` -
Question 3 of 4
3. Question
Two support wires, one `13 m` long and the other `12 m` long, are attached to a pole from a common point `A`. The longer wire is attached to the top of the pole. The shorter wire is attached `4 m` below the longer wire. Find the measurement of `/_ABD`.Round your answer to the nearest minute- `/_ABD` = (66)`°` (47)`'`
Hint
Help VideoCorrect
Fantastic!
Incorrect
Cosine Rule
$$\cos\color{#007DDC}{A}=\frac{\color{#00880A}{b}^2+\color{#9a00c7}{c}^2-\color{#007DDC}{a}^2}{2\color{#00880A}{b}\color{#9a00c7}{c}}$$where:
`a` is the side opposite angle `A`
`b` is the side opposite angle `B`
`c` is the side opposite angle `C`Calculator Buttons to Use
`sin` `=` Sine function`cos` `=` Cosine function`tan` `=` Tangent functionDMS or `° ‘ ‘ ‘` `=` Degree/Minute/SecondShift or 2nd F or INV `=` Inverse function`=` `=` Equal functionSince `3` sides of the triangle `ABC` are given, we can use the Cosine Rule.First, label the triangle `ABC` according to the Cosine Rule.Substitute the three known values to the Cosine Rule to find `B` or `/_ABD`.From labelling the triangle, we know that the known values are those with labels `a, b` and `c`.`B=/_ABD``a=15 cm``b=11 cm``c=6 cm`$$\cos\color{#007DDC}{B}$$ `=` $$\frac{\color{#00880A}{a}^2+\color{#9a00c7}{c}^2-\color{#007DDC}{b}^2}{2\color{#00880A}{a}\color{#9a00c7}{c}}$$ $$\cos\color{#007DDC}{B}$$ `=` $$\frac{\color{#00880A}{13}^2+\color{#9a00c7}{4}^2-\color{#007DDC}{12}^2}{2(\color{#00880A}{13})(\color{#9a00c7}{4})}$$ Substitute the values `cos B` `=` `(169+16-144)/(104)` Simplify `cos B` `=` `41/104` `B` `=` `cos^(-1) (41/104)` Get the inverse of the cosine Simplify this further by evaluating `cos^(-1) (41/104)` using the calculator:`1.` Press Shift or 2nd F (depending on your calculator)`2.` Press `cos``3.` Press `41``4.` Press `divide``3.` Press `104``4.` Press `=`The result will be: `66.78199226°`Proceed with solving for `/_ABD`.`cos^(-1) (41/104)=66.78199226°``B` `=` `cos^(-1) (41/104)` `B` `=` `66.78199226°` `B` `=` `66°46’55”` Press DMS on the calculator `B` or `/_ABD` `=` `66°47’` Round off to the nearest minute `66°47’` -
Question 4 of 4
4. Question
Two support wires, one `13 m` long and the other `12 m` long, are attached to a pole from a common point `A`. The longer wire is attached to the top of the pole. The shorter wire is attached `4 m` below the longer wire. Find the height of the pole `BD`.Round your answer to `1` decimal place- `BD` = (5.1)`m`
Hint
Help VideoCorrect
Nice Job!
Incorrect
Trigonometric Ratios (SOHCAHTOA)
Sin Ratio (SOH)
$$\sin=\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$Cos Ratio (CAH)
$$\cos=\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$Tan Ratio (TOA)
$$\tan=\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$Calculator Buttons to Use
`sin` `=` Sine function`cos` `=` Cosine function`tan` `=` Tangent functionDMS or `° ‘ ‘ ‘` `=` Degree/Minute/Second`=` `=` Equal functionNotice that the scenario creates two right triangles. Focus on the bigger one and label it in reference to the given angle.$$\color{#00880a}{\text{adjacent}}=\color{#00880a}{BD}$$$$\color{#e85e00}{\text{hypotenuse}}=\color{#e85e00}{13}$$Since we now have the adjacent and hypotenuse values, we can use the `cos` ratio to find `BD`.`cos66°47’` `=` $$\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$ `cos66°47’` `=` $$\frac{\color{#00880a}{BD}}{\color{#e85e00}{13}}$$ `13xx``sin66°47’` `=` `(BD)/13``xx13` Multiply both sides by `13` `13cos66°47’` `=` `BD` `BD` `=` `13cos66°47’` Simplify this further by evaluating `13cos66°47’` using the calculator:`1.` Press `13``2.` Press `times``3.` Press `cos``4.` Press `66``5.` Press DMS`6.` Press `47``7.` Press DMS`8.` Press `=`The result will be `5.1247` or `5.1 m` when rounded off to `1` decimal place.`5.1 m`
Quizzes
- Intro to Trigonometric Ratios (SOH CAH TOA) 1
- Intro to Trigonometric Ratios (SOH CAH TOA) 2
- Round Angles (Degrees, Minutes, Seconds)
- Evaluate Trig Expressions using a Calculator 1
- Evaluate Trig Expressions using a Calculator 2
- Trig Ratios: Solving for a Side 1
- Trig Ratios: Solving for a Side 2
- Trig Ratios: Solving for an Angle
- Angles of Elevation and Depression
- Trig Ratios Word Problems: Solving for a Side
- Trig Ratios Word Problems: Solving for an Angle
- Area of Non-Right Angled Triangles 1
- Area of Non-Right Angled Triangles 2
- Law of Sines: Solving for a Side
- Law of Sines: Solving for an Angle
- Law of Cosines: Solving for a Side
- Law of Cosines: Solving for an Angle
- Trigonometry Word Problems 1
- Trigonometry Word Problems 2
- Trigonometry Mixed Review: Part 1 (1)
- Trigonometry Mixed Review: Part 1 (2)
- Trigonometry Mixed Review: Part 1 (3)
- Trigonometry Mixed Review: Part 1 (4)
- Trigonometry Mixed Review: Part 2 (1)
- Trigonometry Mixed Review: Part 2 (2)
- Trigonometry Mixed Review: Part 2 (3)