Topics
>
Precalculus>
Logarithmic Functions>
Indefinite Integrals of Logarithmic Functions>
Indefinite Integrals of Logarithmic Functions 1Indefinite Integrals of Logarithmic Functions 1
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 5 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- Answered
- Review
-
Question 1 of 5
1. Question
Find the integral$$\int{\frac{5}{x}} dx$$Hint
Help VideoCorrect
Great Work!
Incorrect
Integral of a Fraction
$$\int{\frac{1}{\color{#004ec4}{x}}}dx=\log_e \color{#004ec4}{x}+c$$Substitute the components into the formula$$\int{\frac{1}{\color{#004ec4}{x}}}dx$$ `=` $$\log_e \color{#004ec4}{x}+c$$ $$\int{\frac{5}{\color{#004ec4}{x}}}dx$$ `=` $$5\int{\frac{1}{\color{#004ec4}{x}}}dx$$ Take out the constant `5` `=` $$5\ln \color{#004ec4}{x}+c$$ Substitute known values `5 ln x+c` -
Question 2 of 5
2. Question
Find the integral$$\int3x^2+4x-{\frac{6}{x}} dx$$Hint
Help VideoCorrect
Correct!
Incorrect
Integral of a Fraction
$$\int{\frac{1}{\color{#004ec4}{x}}}dx=\log_e \color{#004ec4}{x}+c$$Substitute the components into the formula$$\int{\frac{1}{\color{#004ec4}{x}}}dx$$ `=` $$\log_e \color{#004ec4}{x}+c$$ $$\int 3x^2+4x-{\frac{6}{\color{#004ec4}{x}}}dx$$ `=` $$\frac{3x^3}{3}+\frac{4x^2}{2}-6\int{\frac{1}{\color{#004ec4}{x}}}dx$$ Take out the constants and integrate `=` $$x^3+2x^2-6\ln x+c$$ Simplify `x^3+2x^2-6 ln x+c` -
Question 3 of 5
3. Question
Find the integral$$\int{\frac{dx}{x+5}} dx$$Hint
Help VideoCorrect
Keep Going!
Incorrect
Indefinite Integral
$$\int \frac{\color{#9a00c7}{f'(x)}}{\color{#D800AD}{f(x)}}dx=\log_e [\color{#D800AD}{f(x)}]+c$$First, form a fraction to balance the equation.$$\int \frac{\color{#9a00c7}{f'(x)}}{\color{#D800AD}{f(x)}}$$ `=` $$\int \frac{\color{#9a00c7}{1}}{\color{#D800AD}{x+5}}$$ `=` `1/1` Differentiate the denominator `=` `1` Since it satisfies `(f'(x))/(f(x))`, the equation is already balanced.Substitute the components to the formula`f(x)` `=` `x+5` `f'(x)` `=` `1` $$\int \frac{\color{#9a00c7}{f'(x)}}{\color{#D800AD}{f(x)}}dx$$ `=` $$\log_e [\color{#D800AD}{f(x)}]+c$$ $$\int \frac{\color{#9a00c7}{dx}}{\color{#D800AD}{x+5}}dx$$ `=` $$\ln [\color{#D800AD}{x+5}]+c$$ Substitute known values `ln (x+5)+c` -
Question 4 of 5
4. Question
Find the integral$$\int{\frac{2x}{x^2+1}} dx$$Hint
Help VideoCorrect
Fantastic!
Incorrect
Indefinite Integral
$$\int \frac{\color{#9a00c7}{f'(x)}}{\color{#D800AD}{f(x)}}dx=\log_e [\color{#D800AD}{f(x)}]+c$$First, form a fraction to balance the equation.$$\int \frac{\color{#9a00c7}{f'(x)}}{\color{#D800AD}{f(x)}}$$ `=` $$\int \frac{\color{#9a00c7}{2x}}{\color{#D800AD}{x^2+1}}$$ `=` `(2x)/(2x)` Differentiate the denominator `=` `1` Since it satisfies `(f'(x))/(f(x))`, the equation is already balanced.Substitute the components to the formula`f(x)` `=` `x^2+1` `f'(x)` `=` `2x` $$\int \frac{\color{#9a00c7}{f'(x)}}{\color{#D800AD}{f(x)}}dx$$ `=` $$\log_e [\color{#D800AD}{f(x)}]+c$$ $$\int \frac{\color{#9a00c7}{2x}}{\color{#D800AD}{x^2+1}}dx$$ `=` $$\ln [\color{#D800AD}{x^2+1}]+c$$ Substitute known values `ln (x^2+1)+c` -
Question 5 of 5
5. Question
Find the integral$$\int{\frac{1}{4x-7}} dx$$Hint
Help VideoCorrect
Excellent!
Incorrect
Indefinite Integral
$$\int \frac{\color{#9a00c7}{f'(x)}}{\color{#D800AD}{f(x)}}dx=\log_e [\color{#D800AD}{f(x)}]+c$$First, form a fraction to balance the equation.$$\int \frac{\color{#9a00c7}{f'(x)}}{\color{#D800AD}{f(x)}}$$ `=` $$\int \frac{\color{#9a00c7}{1}}{\color{#D800AD}{4x-7}}$$ `=` `1/4` Differentiate the denominator Use `1/4` as a constant to balance the integral.`f(x)` `=` `4x-7` `f'(x)` `=` `4` $$\frac{1}{4}\int \frac{\color{#9a00c7}{f'(x)}}{\color{#D800AD}{f(x)}}dx$$ `=` $$\frac{1}{4}\log_e [\color{#D800AD}{f(x)}]+c$$ $$\frac{1}{4}\int \frac{\color{#9a00c7}{4}}{\color{#D800AD}{4x-7}}dx$$ `=` $$\frac{1}{4}\int \frac{\color{#9a00c7}{4}}{\color{#D800AD}{4x-7}}$$ `=` $$\frac{1}{4} \ln [\color{#D800AD}{4x-7}]+c$$ Substitute known values `1/4 ln (4x-7)+c`