Topics
>
Precalculus>
Logarithmic Functions>
Indefinite Integrals of Logarithmic Functions>
Indefinite Integrals of Logarithmic Functions 2Indefinite Integrals of Logarithmic Functions 2
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 5 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- Answered
- Review
-
Question 1 of 5
1. Question
Find the integral$$\int{\frac{3}{2x-6}} dx$$Hint
Help VideoCorrect
Nice Job!
Incorrect
Indefinite Integral
$$\int \frac{\color{#9a00c7}{f'(x)}}{\color{#D800AD}{f(x)}}dx=\log_e [\color{#D800AD}{f(x)}]+c$$First, form a fraction to balance the equation.$$\int \frac{\color{#9a00c7}{f'(x)}}{\color{#D800AD}{f(x)}}$$ `=` $$\int \frac{\color{#9a00c7}{3}}{\color{#D800AD}{2x-6}}$$ `=` `3/2` Differentiate the denominator Use `3/2` as a constant to balance the integral.`f(x)` `=` `3x-6` `f'(x)` `=` `3` $$\int \frac{\color{#9a00c7}{f'(x)}}{\color{#D800AD}{f(x)}}dx$$ `=` $$\log_e [\color{#D800AD}{f(x)}]+c$$ $$\int \frac{\color{#9a00c7}{3}}{\color{#D800AD}{2x-6}}dx$$ `=` $$\frac{3}{2} \ln [\color{#D800AD}{2x-6}]+c$$ Substitute known values `3/2 ln (2x-6)+c` -
Question 2 of 5
2. Question
Find the integral$$\int{\frac{x^2}{2x^3+4}} dx$$Hint
Help VideoCorrect
Well Done!
Incorrect
Indefinite Integral
$$\int \frac{\color{#9a00c7}{f'(x)}}{\color{#D800AD}{f(x)}}dx=\log_e [\color{#D800AD}{f(x)}]+c$$First, form a fraction to balance the equation.$$\int \frac{\color{#9a00c7}{f'(x)}}{\color{#D800AD}{f(x)}}$$ `=` $$\int \frac{\color{#9a00c7}{x^2}}{\color{#D800AD}{2x^3+4}}$$ `=` `(x^2)/(6x^2)` Differentiate the denominator `=` `1/6` `(x^2)/(x^2)=1` Use `1/6` as a constant to balance the integral.`f(x)` `=` `2x^3+4` `f'(x)` `=` `6x^2` $$\frac{1}{6}\int \frac{\color{#9a00c7}{f'(x)}}{\color{#D800AD}{f(x)}}dx$$ `=` $$\frac{1}{6}\log_e [\color{#D800AD}{f(x)}]+c$$ $$\frac{1}{6}\int \frac{\color{#9a00c7}{6x^2}}{\color{#D800AD}{2x^3+4}}dx$$ `=` $$\frac{1}{6} \ln [\color{#D800AD}{2x^3+4}]+c$$ Substitute known values `1/6 ln (2x^3+4)+c` -
Question 3 of 5
3. Question
Find the integral$$\int{\frac{x^5}{2x^6+3}} dx$$Hint
Help VideoCorrect
Correct!
Incorrect
Indefinite Integral
$$\int \frac{\color{#9a00c7}{f'(x)}}{\color{#D800AD}{f(x)}}dx=\log_e [\color{#D800AD}{f(x)}]+c$$First, form a fraction to balance the equation.$$\int \frac{\color{#9a00c7}{f'(x)}}{\color{#D800AD}{f(x)}}$$ `=` $$\int \frac{\color{#9a00c7}{x^5}}{\color{#D800AD}{2x^6+3}}$$ `=` `(x^5)/(12x^5)` Differentiate the denominator `=` `1/12` `(x^5)/(x^5)=1` Use `1/12` as a constant to balance the integral.`f(x)` `=` `2x^6+3` `f'(x)` `=` `12x^5` $$\frac{1}{12}\int \frac{\color{#9a00c7}{f'(x)}}{\color{#D800AD}{f(x)}}dx$$ `=` $$\frac{1}{12}\log_e [\color{#D800AD}{f(x)}]+c$$ $$\frac{1}{12}\int \frac{\color{#9a00c7}{12x^5}}{\color{#D800AD}{2x^6+3}}dx$$ `=` $$\frac{1}{12} \ln [\color{#D800AD}{2x^6+3}]+c$$ Substitute known values `1/12 ln (2x^6+3)+c` -
Question 4 of 5
4. Question
Find the integral$$\int{\frac{x}{(x+3)(x-3)}} dx$$Hint
Help VideoCorrect
Fantastic!
Incorrect
Indefinite Integral
$$\int \frac{\color{#9a00c7}{f'(x)}}{\color{#D800AD}{f(x)}}dx=\log_e [\color{#D800AD}{f(x)}]+c$$First, form a fraction to balance the equation.$$\int \frac{\color{#9a00c7}{f'(x)}}{\color{#D800AD}{f(x)}}$$ `=` $$\int \frac{\color{#9a00c7}{x}}{\color{#D800AD}{(x+3)(x-3)}}$$ `=` $$\frac{x}{\color{#CC0000}{x^2-9}}$$ Expand `=` `x/(2x)` Differentiate the denominator `=` `1/2` `(x)/(x)=1` Use `1/2` as a constant to balance the integral.`f(x)` `=` `x^2-9` `f'(x)` `=` `2x` $$\frac{1}{2}\int \frac{\color{#9a00c7}{f'(x)}}{\color{#D800AD}{f(x)}}dx$$ `=` $$\frac{1}{2}\log_e [\color{#D800AD}{f(x)}]+c$$ $$\frac{1}{2}\int \frac{\color{#9a00c7}{2x}}{\color{#D800AD}{x^2-9}}dx$$ `=` $$\frac{1}{2} \ln [\color{#D800AD}{x^2-9}]+c$$ Substitute known values `1/2 ln (x^2-9)+c` -
Question 5 of 5
5. Question
Find the integral$$\int{\frac{x+3}{x^2+6x-1}} dx$$Hint
Help VideoCorrect
Nice Job!
Incorrect
Indefinite Integral
$$\int \frac{\color{#9a00c7}{f'(x)}}{\color{#D800AD}{f(x)}}dx=\log_e [\color{#D800AD}{f(x)}]+c$$First, form a fraction to balance the equation.$$\int \frac{\color{#9a00c7}{f'(x)}}{\color{#D800AD}{f(x)}}$$ `=` $$\int \frac{\color{#9a00c7}{x+3}}{\color{#D800AD}{x^2+6x-1}}$$ `=` `(x+3)/(2x+6)` Differentiate the denominator `=` $$\frac{x+3}{\color{#CC0000}{2(x+3)}}$$ Factorize `=` `1/2` `(x+3)/(x+3)=1` Use `1/2` as a constant to balance the integral.`f(x)` `=` `x^2+6x-1` `f'(x)` `=` `2x+6` $$\frac{1}{2}\int \frac{\color{#9a00c7}{f'(x)}}{\color{#D800AD}{f(x)}}dx$$ `=` $$\frac{1}{2}\log_e [\color{#D800AD}{f(x)}]+c$$ $$\frac{1}{2}\int \frac{\color{#9a00c7}{2x+6}}{\color{#D800AD}{x^2+6x-1}}dx$$ `=` $$\frac{1}{2} \ln [\color{#D800AD}{x^2+6x-1}]+c$$ Substitute known values `1/2 ln (x^2+6x-1)+c`