Simpsons Rule
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 7 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
- 6
- 7
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- Answered
- Review
-
Question 1 of 7
1. Question
Find the area under the curve y=x24y=x24- Area=Area= (4.6667) square unitssquare units
Hint
Help VideoCorrect
Great Work!
Incorrect
Need TextPlayCurrent Time 0:00/Duration Time 0:00Remaining Time -0:00Stream TypeLIVELoaded: 0%Progress: 0%0:00Fullscreen00:00MutePlayback Rate1x- 2x
- 1.5x
- 1.25x
- 1x
- 0.75x
- 0.5x
Subtitles- subtitles off
Captions- captions off
- English
Chapters- Chapters
Simpsons Rule
∫baf(x)dx≈b-a6[f(a)+4f(a+b2)+f(b)]∫baf(x)dx≈b−a6[f(a)+4f(a+b2)+f(b)]First, construct a table of values for both xx and yy given the equation.y=x24y=x24xx 22 33 44 yy Substitute x=2x=2 into the given equation.yy == 224224 Substitute the value of xx == 4444 Simplify yy == 11 f(a)f(a) == 11 xx 22 33 44 yy 11 Substitute x=3x=3 into the given equation.yy == 324324 Substitute the value of xx yy == 9494 Simplify f(a+b2)f(a+b2) == 9494 xx 22 33 44 yy 11 9494 Repeat this process for each x-valuex-valuexx 22 33 44 yy 11 9494 44 Apply Simpsons RuleAA ≈≈ ∫baf(x)dx∫baf(x)dx ≈≈ b−a6[f(a)+4f(a+b)2+f(b)]b−a6[f(a)+4f(a+b)2+f(b)] Simpsons Rule formula ≈≈ 4−26[1+4(94)+4]4−26[1+4(94)+4] Substitute known values ≈≈ 26[5+364]26[5+364] Simplify ≈≈ 13[14]13[14] ≈≈ 143143 ≈≈ 4.66674.6667 4.6667 square units4.6667 square units -
Question 2 of 7
2. Question
Find the area under the curve y=2xy=2x- Area=Area= (43.333)
Hint
Help VideoCorrect
Correct!
Incorrect
Need TextPlayCurrent Time 0:00/Duration Time 0:00Remaining Time -0:00Stream TypeLIVELoaded: 0%Progress: 0%0:00Fullscreen00:00MutePlayback Rate1x- 2x
- 1.5x
- 1.25x
- 1x
- 0.75x
- 0.5x
Subtitles- subtitles off
Captions- captions off
- English
Chapters- Chapters
Simpsons Rule
∫baf(x)dx≈h3[y0+yL+2(y2+y4+…)+4(y1+y3+…)]∫baf(x)dx≈h3[y0+yL+2(y2+y4+…)+4(y1+y3+…)]First, find the values of aa, bb and nn from the given equation∫51y∫51y == 2x2x a=1a=1(lower limit)b=5b=5(upper limit)n=4n=4(number of strips in given diagram)Solve for hhhh == b−anb−an == 5−145−14 Substitute values of aa, bb, and nn == 4444 Simplify hh == 11 First, construct a table of values for both xx and yy given the equation.y=2xy=2xxx 11 22 33 44 55 yy Substitute x=1x=1 into the given equation.yy == 2121 Substitute the value of xx == 2121 Simplify y0y0 == 22 xx 11 22 33 44 55 yy 22 Substitute x=2x=2 into the given equation.yy == 2222 Substitute the value of xx y1y1 == 44 Simplify xx 11 22 33 44 55 yy 22 44 Repeat this process for each x-valuex-valuexx 11 22 33 44 55 yy 22 44 88 1616 3232 Apply Simpsons RuleAA ≈≈ ∫baf(x)dx∫baf(x)dx ≈≈ h3[h3[y0y0++yLyL+2(+2(y2y2++y4y4+…)+4(+…)+4(y1y1++y3y3+…)]+…)] Simpsons Rule formula ≈≈ 13[13[22++3232+2(+2(88)+4()+4(44++1616)])] Substitute known values ≈≈ 13[34+16+80]13[34+16+80] Simplify ≈≈ 13[130]13[130] ≈≈ 13031303 ≈≈ 43.33343.333 43.33343.333 -
Question 3 of 7
3. Question
Find the area under the curve y=6xy=6x- Area=Area= (4.159)
Hint
Help VideoCorrect
Keep Going!
Incorrect
Need TextPlayCurrent Time 0:00/Duration Time 0:00Remaining Time -0:00Stream TypeLIVELoaded: 0%Progress: 0%0:00Fullscreen00:00MutePlayback Rate1x- 2x
- 1.5x
- 1.25x
- 1x
- 0.75x
- 0.5x
Subtitles- subtitles off
Captions- captions off
- English
Chapters- Chapters
Simpsons Rule
∫baf(x)dx≈h3[y0+yL+2(y2+y4+…)+4(y1+y3+…)]∫baf(x)dx≈h3[y0+yL+2(y2+y4+…)+4(y1+y3+…)]First, find the values of aa, bb and nn from the given equation∫63y∫63y == 6x6x a=3a=3(lower limit)b=6b=6(upper limit)n=6n=6(number of strips in given diagram)Solve for hhhh == b−anb−an == 6−366−36 Substitute values of aa, bb, and nn == 3636 Simplify hh == 1212 First, construct a table of values for both xx and yy given the equation.y=2xy=2xxx 33 3.53.5 44 4.54.5 55 5.55.5 66 yy Substitute x=3x=3 into the given equation.yy == 6363 Substitute the value of xx == 22 Simplify y0y0 == 22 xx 33 3.53.5 44 4.54.5 55 5.55.5 66 yy 22 Substitute x=3.5x=3.5 into the given equation.yy == 63.563.5 Substitute the value of xx y1y1 == 63.563.5 Simplify xx 33 3.53.5 44 4.54.5 55 5.55.5 66 yy 22 63.563.5 Repeat this process for each x-valuex-valuexx 33 3.53.5 44 4.54.5 55 5.55.5 66 yy 22 63.563.5 6464 64.564.5 6565 65.565.5 11 Apply Simpsons RuleAA ≈≈ ∫baf(x)dx∫baf(x)dx ≈≈ h3[h3[y0y0++yLyL+2(+2(y2y2++y4y4+…)+4(+…)+4(y1y1++y3y3+…)]+…)] Simpsons Rule formula ≈≈ 123[123[2+1+2(64+65)+4(63.5+64.5+65.5)] Substitute known values ≈ 16[3+2(2710)+4(4.1385)] Simplify ≈ 16[3+5410+16.554113] ≈ 16(24.954113) ≈ 4.159 4.159 -
Question 4 of 7
4. Question
Find and estimate the area of the orange parcel of land.- Area= (1960) m2
Hint
Help VideoCorrect
Fantastic!
Incorrect
Need TextPlayCurrent Time 0:00/Duration Time 0:00Remaining Time -0:00Stream TypeLIVELoaded: 0%Progress: 0%0:00Fullscreen00:00MutePlayback Rate1x- 2x
- 1.5x
- 1.25x
- 1x
- 0.75x
- 0.5x
Subtitles- subtitles off
Captions- captions off
- English
Chapters- Chapters
Simpsons Rule
∫baf(x)dx≈h3[y0+yL+2(y2+y4+…)+4(y1+y3+…)]First, find the value of h from the given illustration.h = 20 m Next, identify the values for substitution into Simpsons Rule.y0 y1 y2 y3 yL 21.5 24 22.5 28 19.5 Apply Simpsons RuleA ≈ h3[y0+yL+2(y2+y4+…)+4(y1+y3+…)] Simpsons Rule formula ≈ 203[21.5+19.5+2(22.5)+4(24+28)] Substitute known values ≈ 203[41+45+208] Simplify ≈ 203[294] ≈ 1960 1960 m2 -
Question 5 of 7
5. Question
Find and estimate the area of the huge block of land.- Area= (251333 1/3, 251333.33, 251333.3333) m2
Hint
Help VideoCorrect
Excellent!
Incorrect
Need TextPlayCurrent Time 0:00/Duration Time 0:00Remaining Time -0:00Stream TypeLIVELoaded: 0%Progress: 0%0:00Fullscreen00:00MutePlayback Rate1x- 2x
- 1.5x
- 1.25x
- 1x
- 0.75x
- 0.5x
Subtitles- subtitles off
Captions- captions off
- English
Chapters- Chapters
Simpsons Rule
∫baf(x)dx≈h3[y0+yL+2(y2+y4+…)+4(y1+y3+…)]First, find the value of h from the given illustration.h = 200 m Next, identify the values for substitution into Simpsons Rule.y0 y1 y2 y3 y4 y5 yL 0 150 290 320 210 180 170 Apply Simpsons RuleA ≈ h3[y0+yL+2(y2+y4+…)+4(y1+y3+…)] Simpsons Rule formula ≈ 2003[0+170+2(290+210)+4(150+320+180)] Substitute known values ≈ 2003[170+1000+4(2600)] Simplify ≈ 2003[3770] ≈ 25133313 25133313 m2 -
Question 6 of 7
6. Question
Find and estimate the area of the yellow parcel of land.- Area= (45000) m2
Hint
Help VideoCorrect
Nice Job!
Incorrect
Need TextPlayCurrent Time 0:00/Duration Time 0:00Remaining Time -0:00Stream TypeLIVELoaded: 0%Progress: 0%0:00Fullscreen00:00MutePlayback Rate1x- 2x
- 1.5x
- 1.25x
- 1x
- 0.75x
- 0.5x
Subtitles- subtitles off
Captions- captions off
- English
Chapters- Chapters
Simpsons Rule
∫baf(x)dx≈h3[y0+yL+2(y2+y4+…)+4(y1+y3+…)]First, find the value of h from the given illustration.h = 4004 h = 100 m Next, identify the values for substitution into Simpsons Rule.y0 y1 y2 y3 yL 110 98 102 124 148 Apply Simpsons RuleA ≈ h3[y0+yL+2(y2+y4+…)+4(y1+y3+…)] Simpsons Rule formula ≈ 1003[110+148+2(102)+4(98+124)] Substitute known values ≈ 1003[258+204+888] Simplify ≈ 1003[1350] ≈ 45000 45000 m2 -
Question 7 of 7
7. Question
Find and estimate the area of the irregular piece of land.- Area= (5558 2/3) m2
Hint
Help VideoCorrect
Well Done!
Incorrect
Need TextPlayCurrent Time 0:00/Duration Time 0:00Remaining Time -0:00Stream TypeLIVELoaded: 0%Progress: 0%0:00Fullscreen00:00MutePlayback Rate1x- 2x
- 1.5x
- 1.25x
- 1x
- 0.75x
- 0.5x
Subtitles- subtitles off
Captions- captions off
- English
Chapters- Chapters
Simpsons Rule
∫baf(x)dx≈h3[df+4dm+dL]First, find the value of h from the given illustration.h = 22 m Next, identify the values for substitution into Simpsons Rule.df dm dL 0 49 68 df dm dL 68 88 74 Apply Simpsons Rule to find A1A1 ≈ h3[df+4dm+dL] Simpsons Rule formula ≈ 223[0+4(49)+68] Substitute known values ≈ 223[68+196] Simplify ≈ 223[264] A1 ≈ 1936 m2 Apply Simpsons Rule to find A2A2 ≈ h3[df+4dm+dL] Simpsons Rule formula ≈ 223[68+4(88)+74] Substitute known values ≈ 223[142+352] Simplify ≈ 223[494] A2 ≈ 362223 m2 Add A1 and A2A ≈ A1+A2 Combine the areas ≈ 1936+362223 ≈ 555823 555823 m2
Quizzes
- Indefinite Integrals 1
- Indefinite Integrals 2
- Indefinite Integrals 3
- Indefinite Integrals of Exponential Functions
- Indefinite Integrals of Logarithmic Functions 1
- Indefinite Integrals of Logarithmic Functions 2
- Indefinite Integrals of Trig Functions
- Definite Integrals
- Definite Integrals of Exponential Functions
- Definite Integrals of Logarithmic Functions
- Definite Integrals of Trig Functions
- Areas Between Curves and the Axis 1
- Areas Between Curves and the Axis 2
- Area Between Curves
- Volumes of Revolution 1
- Volumes of Revolution 2
- Volumes of Revolution 3
- Trapezoidal Rule
- Simpsons Rule
- Applications of Integration for Trig Functions