Topics
>
Algebra 2>
Quadratic Equations and Functions>
Quadratic Identities>
Quadratic IdentitiesQuadratic Identities
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 6 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
- 6
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- 6
- Answered
- Review
-
Question 1 of 6
1. Question
Find the values of `A`, `B` and `C`, given that:`x^2+6x-2≡A(x+1)^2+B(x+1)+C`-
`A=` (1)`B=` (4)`C=` (-7)
Hint
Help VideoCorrect
Fantastic!
Incorrect
Standard Form
`ax^2+bx+c`A Quadratic Identity is composed of two quadratic equations that exactly match each other.First, list the coefficients of the quadratic equation on the left side`x^2+6x-2``a=1` `b=6` `c=-2`Next, expand the right side of the identity and arrange it in standard form`A(x+1)^2+B(x+1)+C` `=` `A(x^2+2x+1)+B(x+1)+C` `=` `Ax^2+2Ax+A+Bx+B+C` `=` `Ax^2+2Ax+Bx+A+B+C` `=` `A``x^2+(``2A+B``)x+``A+B+C` Equate each corresponding coefficient to solve for `A`, `B` and `C`Coefficient of `x^2`:`A``x^2+(2A+B)x+A+B+C``1``x^2+6x-2``A` `=` `1` Coefficient of `x`:`Ax^2+(``2A+B``)x+A+B+C``x^2+``6``x-2``2A+B` `=` `6` `2(1)+B` `=` `6` Substitute `A` `2+B` `=` `6` `2+B` `-2` `=` `6` `-2` Subtract `2` from both sides `B` `=` `4` Constants:`Ax^2+(2A+B)x+``A+B+C``x^2+6x``-2``A+B+C` `=` `-2` `1+4+C` `=` `-2` Substitute `A` and `B` `5+C` `=` `-2` `5+C` `-5` `=` `-2` `-5` Subtract `5` from both sides `C` `=` `-7` `A=1``B=4``C=-7` -
-
Question 2 of 6
2. Question
Find the values of `A`, `B` and `C`, given that:`2x^2+5x-2≡A(x+2)^2+B(x+2)+C`-
`A=` (2)`B=` (-3)`C=` (-4)
Hint
Help VideoCorrect
Excellent!
Incorrect
Standard Form
`ax^2+bx+c`A Quadratic Identity is composed of two quadratic equations that exactly match each other.First, list the coefficients of the quadratic equation on the left side`2x^2+5x-2``a=2` `b=5` `c=-2`Next, expand the right side of the identity and arrange it in standard form`A(x+2)^2+B(x+2)+C` `=` `A(x^2+4x+4)+B(x+2)+C` `=` `Ax^2+4Ax+4A+Bx+2B+C` `=` `Ax^2+4Ax+Bx+4A+2B+C` `=` `A``x^2+(``4A+B``)x+``4A+2B+C` Equate each corresponding coefficient to solve for `A`, `B` and `C`Coefficient of `x^2`:`A``x^2+(4A+B)x+4A+2B+C``2``x^2+5x-2``A` `=` `2` Coefficient of `x`:`Ax^2+(``4A+B``)x+4A+2B+C``2x^2+``5``x-2``4A+B` `=` `5` `4(2)+B` `=` `5` Substitute `A` `8+B` `=` `5` `8+B` `-8` `=` `5` `-8` Subtract `8` from both sides `B` `=` `-3` Constants:`Ax^2+(4A+B)x+``4A+2B+C``x^2+5x``-2``4A+2B+C` `=` `-2` `4(2)+2(-3)+C` `=` `-2` Substitute `A` and `B` `8-6+C` `=` `-2` `2+C` `-2` `=` `-2` `-2` Subtract `2` from both sides `C` `=` `-4` `A=2``B=-3``C=-4` -
-
Question 3 of 6
3. Question
Find the values of `A`, `B` and `C`, given that:`-x^2+5x-2≡A(x+3)^2+B(x+3)+C`-
`A=` (-1)`B=` (11)`C=` (-26)
Hint
Help VideoCorrect
Nice Job!
Incorrect
Standard Form
`ax^2+bx+c`A Quadratic Identity is composed of two quadratic equations that exactly match each other.First, list the coefficients of the quadratic equation on the left side`-x^2+5x-2``a=-1` `b=5` `c=-2`Next, expand the right side of the identity and arrange it in standard form`A(x+3)^2+B(x+3)+C` `=` `A(x^2+6x+9)+B(x+3)+C` `=` `Ax^2+6Ax+9A+Bx+3B+C` `=` `Ax^2+6Ax+Bx+9A+3B+C` `=` `A``x^2+(``6A+B``)x+``9A+3B+C` Equate each corresponding coefficient to solve for `A`, `B` and `C`Coefficient of `x^2`:`A``x^2+(6A+B)x+9A+3B+C``-1``x^2+5x-2``A` `=` `-1` Coefficient of `x`:`Ax^2+(``6A+B``)x+9A+3B+C``-x^2+``5``x-2``6A+B` `=` `5` `6(-1)+B` `=` `5` Substitute `A` `-6+B` `=` `5` `-6+B` `+6` `=` `5` `+6` Add `6` to both sides `B` `=` `11` Constants:`Ax^2+(4A+B)x+``9A+3B+C``-x^2+5x``-2``9A+3B+C` `=` `-2` `9(-1)+3(11)+C` `=` `-2` Substitute `A` and `B` `-9+33+C` `=` `-2` `24+C` `-24` `=` `-2` `-24` Subtract `24` from both sides `C` `=` `-26` `A=-1``B=11``C=-26` -
-
Question 4 of 6
4. Question
Find the values of `P`, `Q` and `R`, given that:`x^2-3≡P(x-3)^2+Q(x+1)-2R`-
`P=` (1)`Q=` (6)`R=` (9)
Hint
Help VideoCorrect
Well Done!
Incorrect
Standard Form
`ax^2+bx+c`A Quadratic Identity is composed of two quadratic equations that exactly match each other.First, list the coefficients of the quadratic equation on the left side`x^2-3``a=1` `b=0` `c=-3`Next, expand the right side of the identity and arrange it in standard form`P(x-3)^2+Q(x+1)-2R` `=` `P(x^2-6x+9)+Q(x+1)-2R` `=` `Px^2-6Px+9P+Qx+Q-2R` `=` `Px^2-6Px+Qx+9P+Q-2R` `=` `P``x^2+(``-6P+Q``)x+``9P+Q-2R` Equate each corresponding coefficient to solve for `P`, `Q` and `R`Coefficient of `x^2`:`P``x^2+(-6P+Q)x+9P+Q-2R``1``x^2-3``P` `=` `1` Coefficient of `x`:`Px^2+(``-6P+Q``)x+9P+Q-2R``x^2-3``-6P+Q` `=` `0` `-6(1)+Q` `=` `0` Substitute `P` `-6+Q` `=` `0` `-6+Q` `+6` `=` `0` `+6` Add `6` to both sides `Q` `=` `6` Constants:`Px^2+(-6P+Q)x+``9P+Q-2R``x^2``-3``9P+Q-2R` `=` `-3` `9(1)+6-2R` `=` `-3` Substitute `P` and `Q` `15-2R` `=` `-3` `15-2R` `-15` `=` `-3` `-15` Subtract `15` from both sides `-2R``divide(-2)` `=` `-18``divide(-2)` Divide both sides by `-2` `R` `=` `9` `P=1``Q=6``R=9` -
-
Question 5 of 6
5. Question
Find the values of `P`, `Q` and `R`, given that:`2x^2+5x-3≡Px(x-5)+(Qx-1)(R+1)`-
`P=` (2)`Q=` (5)`R=` (2)
Hint
Help VideoCorrect
Great Work!
Incorrect
Standard Form
`ax^2+bx+c`A Quadratic Identity is composed of two quadratic equations that exactly match each other.First, list the coefficients of the quadratic equation on the left side`2x^2+5x-3``a=2` `b=5` `c=-3`Next, expand the right side of the identity and arrange it in standard form`Px(x-5)+(Qx-1)(R+1)` `=` `Px^2-5Px+QxR+Qx-R-1` `=` `P``x^2+(``-5P+QR+Q``)x``-R-1` Equate each corresponding coefficient to solve for `P`, `Q` and `R`Coefficient of `x^2`:`P``x^2+(-6P+Q)x+9P+Q-2R``2``x^2+5x-3``P` `=` `2` Constants:`Px^2+(-5P+QR+Q)x``-R-1``2x^2+5x``-3``-R-1` `=` `-3` `-R-1` `+1` `=` `-3` `+1` Add `1` to both sides `-R``divide(-1)` `=` `-2``divide(-1)` Divide both sides by `-1` `R` `=` `2` Coefficient of `x`:`Px^2+(``-5P+QR+Q``)x-R-1``2x^2+``5``x-3``-5P+QR+Q` `=` `5` `-5P+Q(R+1)` `=` `5` `-5(2)+Q(2+1)` `=` `5` Substitute `P` and `R` `-10+3Q` `=` `5` `-10+3Q` `+10` `=` `5` `+10` Add `10` to both sides `3Q``divide3` `=` `15``divide3` Divide both sides by `3` `Q` `=` `5` `P=2``Q=5``R=2` -
-
Question 6 of 6
6. Question
Find the values of `K`, `L` and `M`, given that:`9x^2-6x+2≡(Kx-3)^2+L(x-3)+M`-
`K=` (3, -3) and (3, -3)`L=` (12, -24) and (12, -24)`M=` (29, -79) and (29, -79)
Hint
Help VideoCorrect
Keep Going!
Incorrect
Standard Form
`ax^2+bx+c`A Quadratic Identity is composed of two quadratic equations that exactly match each other.First, list the coefficients of the quadratic equation on the left side`9x^2-6x+2``a=9` `b=-6` `c=2`Next, expand the right side of the identity and arrange it in standard form`(Kx-3)^2+L(x-3)+M` `=` `K^2x^2-6Kx+9+Lx-3L+M` `=` `K^2x^2-6Kx+Lx+9-3L+M` `=` `K^2``x^2+(``-6K+L``)x+``9-3L+M` Equate each corresponding coefficient to solve for `A`, `B` and `C`Coefficient of `x^2`:`K^2``x^2+(-6K+L)x+9-3L+M``9``x^2-6x+2``K^2` `=` `9` `sqrt(K^2)` `=` `sqrt9` Take the square root of both sides `K` `=` `+-3` `K` `=` `3` `K` `=` `-3` Coefficient of `x`:`K^2x^2+(``-6K+L``)x+9-3L+M``9x^2``-6``x+2`Substitute `K=3``-6K+L` `=` `-6` `-6(3)+L` `=` `-6` `-18+L` `=` `-6` `-18+L` `+18` `=` `-6` `+18` `L` `=` `12` Substitute `K=-3``-6K+L` `=` `-6` `-6(-3)+L` `=` `-6` `18+L` `=` `-6` `18+L` `-18` `=` `-6` `-18` `L` `=` `-24` Constants:`K^2x^2+(-6K+L)x+``9-3L+M``9x^2-6x+``2`Substitute `L=12``9-3L+M` `=` `2` `9-3(12)+M` `=` `2` `9-36+M` `=` `2` `-27+M` `=` `2` `-27+M` `+27` `=` `2` `+27` `M` `=` `29` Substitute `L=-24``9-3L+M` `=` `2` `9-3(-24)+M` `=` `2` `9+72+M` `=` `2` `81+M` `=` `2` `81+M` `-81` `=` `2` `-81` `M` `=` `-79` `K=3` and `K=-3``L=12` and `L=-24``M=29` and `M=-79` -
Quizzes
- Solve Quadratics by Factoring
- The Quadratic Formula
- Completing the Square 1
- Completing the Square 2
- Intro to Quadratic Functions (Parabolas) 1
- Intro to Quadratic Functions (Parabolas) 2
- Intro to Quadratic Functions (Parabolas) 3
- Graph Quadratic Functions in Standard Form 1
- Graph Quadratic Functions in Standard Form 2
- Graph Quadratic Functions by Completing the Square
- Graph Quadratic Functions in Vertex Form
- Write a Quadratic Equation from the Graph
- Write a Quadratic Equation Given the Vertex and Another Point
- Quadratic Inequalities 1
- Quadratic Inequalities 2
- Quadratics Word Problems 1
- Quadratics Word Problems 2
- Quadratic Identities
- Graphing Quadratics Using the Discriminant
- Positive and Negative Definite
- Applications of the Discriminant 1
- Applications of the Discriminant 2
- Combining Methods for Solving Quadratic Equations