Topics
>
AP Calculus BC>
Integrals>
Antiderivatives of Trig Functions>
Antiderivatives of Trig Functions 2Antiderivatives of Trig Functions 2
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 4 questions completed
Questions:
- 1
- 2
- 3
- 4
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- Answered
- Review
-
Question 1 of 4
1. Question
Find the integral`int tan^2 x dx`Hint
Help VideoCorrect
Excellent!
Incorrect
Integrals of Trigonometric Functions
`int \text(cos)=\text(sin)``int \text(sin)=-\text(cos)``int \text(sec)^2=\text(tan)`Integrating Trigonometric Functions
$$\int f(\color{#004ec4}{g(x)}) dx=f(g(x))\cdot\frac{1}{\color{#004ec4}{g'(x)}} +c$$First, convert the function into a derivable functionTake note that `\text(sec)^2=1+\text(tan)^2x``\text(sec)^2` `=` `1+\text(tan)^2x` `\text(sec)^2` `-1` `=` `1+\text(tan)^2x` `-1` Subtract `1` from both sides `\text(sec)^2-1` `=` `\text(tan)^2x` Therefore, we can use `\text(sec)^2-1` as a derivable substituteFinally, substitute the components into the formula$$\int f(\color{#004ec4}{g(x)}) dx$$ `=` $$f(g(x))\cdot\frac{1}{\color{#004ec4}{g'(x)}} +c$$ $$\int \text{sec}^2\color{#004ec4}{x-1}\;dx$$ `=` $$\text{tan}\;x-x +c$$ Substitute known values and integrate `\text(tan) x-x+c` -
Question 2 of 4
2. Question
Find the integral`int tan x dx`Hint
Help VideoCorrect
Keep Going!
Incorrect
Integrals of Trigonometric Functions
`int \text(cos)=\text(sin)``int \text(sin)=-\text(cos)``int \text(sec)^2=\text(tan)`Integrating Trigonometric Functions
$$\int f(\color{#004ec4}{g(x)}) dx=f(g(x))\cdot\frac{1}{\color{#004ec4}{g'(x)}} +c$$First, convert the function into a derivable functionTake note that `\text(tan) x=(\text(sin) x)/(\text(cos) x)`Therefore, we can use `(\text(sin) x)/(\text(cos) x)` as a derivable substituteNext, take note that `d/(dx)\text(cos) x=-\text(sin) x`This means that the function satisfies the derivative of a natural logarithm `(f'(x))/f(x)`, if the equation is balancedWe can use `-1` as a constant to balance the function`=` `-int (-\text(sin) x)/(\text(cos) x)` Finally, integrate the function into a natural logarithm`-int (-\text(sin) x)/(\text(cos) x)` `=` `-ln (\text(cos) x)+c` `-ln (\text(cos) x)+c` -
Question 3 of 4
3. Question
Find the integral$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\;\text{cos}x\;dx$$Hint
Help VideoCorrect
Fantastic!
Incorrect
Integrals of Trigonometric Functions
`int \text(cos)=\text(sin)``int \text(sin)=-\text(cos)``int \text(sec)^2=\text(tan)`First, integrate the trigonometric function$$\int_{\color{#00880A}{\frac{\pi}{4}}}^{\color{#9a00c7}{\frac{\pi}{2}}}\;\text{cos}\;x\;dx$$ `=` $$\bigg[\text{sin}\;x\bigg]_{\color{#00880A}{\frac{\pi}{4}}}^{\color{#9a00c7}{\frac{\pi}{2}}}$$ Integrate `\text(cos)x` Finally, get the difference of the upper and lower limits substituted to the integral as `x`.$$\bigg[\text{sin}\;x\bigg]_{\color{#00880A}{\frac{\pi}{4}}}^{\color{#9a00c7}{\frac{\pi}{2}}}$$ `=` $$\sin{\color{#9a00c7}{\frac{\pi}{2}}}-\sin{\color{#00880A}{\frac{\pi}{4}}}$$ Substitute the limits `=` `1-1/(sqrt2)` Evaluate `1-1/(sqrt2)` -
Question 4 of 4
4. Question
Find the integral$$\int_{0}^{\frac{\pi}{3}}\;3\;\text{sin}\frac{x}{2}\;dx$$Hint
Help VideoCorrect
Well Done!
Incorrect
Integrals of Trigonometric Functions
`int \text(cos)=\text(sin)``int \text(sin)=-\text(cos)``int \text(sec)^2=\text(tan)`First, integrate the trigonometric function$$\int_{\color{#00880A}{0}}^{\color{#9a00c7}{\frac{\pi}{3}}}\;\text{sin}\;\frac{x}{2}\;dx$$ `=` $$\bigg[3\left(-\text{cos}\;\frac{x}{2}\right)\bigg]_{\color{#00880A}{0}}^{\color{#9a00c7}{\frac{\pi}{3}}}$$ Integrate `3\text(sin) x/2` `=` $$\bigg[-6\text{cos}\;\frac{x}{2}\bigg]_{\color{#00880A}{0}}^{\color{#9a00c7}{\frac{\pi}{3}}}$$ Simplify Finally, get the difference of the upper and lower limits substituted to the integral as `x`.$$\bigg[-6\text{cos}\;\frac{x}{2}\bigg]_{\color{#00880A}{0}}^{\color{#9a00c7}{\frac{\pi}{3}}}$$ `=` $$-6\;\cos{\frac{\color{#9a00c7}{\frac{\pi}{3}}}{2}}-[-6\;\cos{\frac{\color{#00880A}{0}}{2}}]$$ Substitute the limits `=` `-6 \text(cos)(pi/6)+(6*1)` Evaluate `=` `-6*(sqrt3)/2+6` `\text(cos) pi/6=(sqrt3)/2` `=` `-3sqrt3+6` Simplify `-3sqrt3+6`
Quizzes
- Antiderivatives (Indefinite Integrals) 1
- Antiderivatives (Indefinite Integrals) 2
- Antiderivatives (Indefinite Integrals) 3
- Antiderivatives of Exponential Functions
- Antiderivatives of Logarithmic Functions 1
- Antiderivatives of Logarithmic Functions 2
- Antiderivatives of Trig Functions 1
- Antiderivatives of Trig Functions 2
- Definite Integrals
- Definite Integrals of Exponential Functions
- Definite Integrals of Logarithmic Functions