Definite Integrals
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 5 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- Answered
- Review
-
Question 1 of 5
1. Question
Integrate$$\int_{1}^{4} (2x-2) dx$$Hint
Help VideoCorrect
Well Done!
Incorrect
Integration Formula for Definite integral
$$\int_{\color{#9a00c7}{a}}^{\color{\green}{b}} f(x) dx=\left[F(x)\right]_{\color{#9a00c7}{a}}^{\color{\green}{b}}=F(\color{\green}{b})-F(\color{#9a00c7}{a})$$Integration Formula for Indefinite integral
$$\int x^{\color{#004ec4}{n}} dx=\frac{x^{\color{#004ec4}{n}+1}}{\color{#004ec4}{n}+1}+c$$Sum or Difference Rule
$$ \int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx = F(x) \pm G(x) + c $$Find the Indefinite Integral$$\int (2x-2) dx$$ `=` $$\int 2x dx-\int 2 dx$$ Use the Sum or Difference Rule `=` $$2\int x^{\color{#004ec4}{1}} dx-2\int x^{\color{#004ec4}{0}} dx$$ Take the constants out of the integral signs `=` $$2\frac{x^{\color{#004ec4}{1}+1}}{\color{#004ec4}{1}+1}+2\frac{x^{\color{#004ec4}{0}+1}}{\color{#004ec4}{0}+1}+c$$ Use the Integration Formula for Indefinite integral `=` `2x^2/2+2x^{1}/1+c` `=` `x^2-2x+c` Find the Definite Integral by using `F(x)=x^2-2x`$$\int_{\color{#9a00c7}{1}}^{\color{\green}{4}} (2x-2) dx$$ `=` $$\left[x^2-2x\right]_{\color{#9a00c7}{1}}^{\color{\green}{4}}$$ Use the Integration Formula for Definite integral to get the answer `=` `(\color{\green}{4}^2-2\times\color{\green}{4}) – (\color{#9a00c7}{1}^2- 2\times\color{#9a00c7}{1})` `=` `(16-8) – (1-2)` `=` `8 + 1` `=` `9` `9` -
Question 2 of 5
2. Question
Integrate$$\int_{0}^{5} 3x^{2} dx$$Hint
Help VideoCorrect
Nice Job!
Incorrect
Integration Formula for Definite integral
$$\int_{\color{#9a00c7}{a}}^{\color{\green}{b}} f(x) dx=\left[F(x)\right]_{\color{#9a00c7}{a}}^{\color{\green}{b}}=F(\color{\green}{b})-F(\color{#9a00c7}{a})$$Integration Formula for Indefinite integral
$$\int x^{\color{#004ec4}{n}} dx=\frac{x^{\color{#004ec4}{n}+1}}{\color{#004ec4}{n}+1}+c$$Find the Indefinite Integral$$\int 3x^{2} dx$$ `=` $$3\int x^{2} dx$$ Take the constant `3` out of the integral sign `=` $$3\frac{x^{\color{#004ec4}{2}+1}}{\color{#004ec4}{2}+1}+c$$ Use the Integration Formula for Indefinite integral `=` `3x^3/3+c` `=` `x^3+c` Find the Definite Integral by using `F(x)=x^3`$$\int_{\color{#9a00c7}{0}}^{\color{\green}{5}} 3x^{2} dx$$ `=` $$\left[x^3\right]_{\color{#9a00c7}{0}}^{\color{\green}{5}}$$ Use the Integration Formula for Definite integral to get the answer `=` `\color{\green}{5}^3 – \color{#9a00c7}{0}^3` `=` `5^{3}` `=` `125` `125` -
Question 3 of 5
3. Question
Integrate$$\int_{-2}^{2} x^{5} dx$$Hint
Help VideoCorrect
Excellent!
Incorrect
Integration Formula for Definite integral
$$\int_{\color{#9a00c7}{a}}^{\color{\green}{b}} f(x) dx=\left[F(x)\right]_{\color{#9a00c7}{a}}^{\color{\green}{b}}=F(\color{\green}{b})-F(\color{#9a00c7}{a})$$Integration Formula for Indefinite integral
$$\int x^{\color{#004ec4}{n}} dx=\frac{x^{\color{#004ec4}{n}+1}}{\color{#004ec4}{n}+1}+c$$Find the Indefinite Integral$$\int x^{5} dx$$ `=` $$\frac{x^{\color{#004ec4}{5}+1}}{\color{#004ec4}{5}+1}+c$$ Use the Integration Formula for Indefinite integral `=` `x^6/6+c` Find the Definite Integral by using `F(x)=x^6/6`$$\int_{\color{#9a00c7}{-2}}^{\color{\green}{2}} x^{5} dx$$ `=` $$\left[\frac{x^6}{6}\right]_{\color{#9a00c7}{-2}}^{\color{\green}{2}}$$ Use the Integration Formula for Definite integral to get the answer `=` `\color{\green}{2}^6/6-\color{#9a00c7}{(-2)}^6/6` `=` `64/6-64/6` `=` `0` `0` -
Question 4 of 5
4. Question
Integrate$$\int_{1}^{2} (2x-1)^{2} dx$$Hint
Help VideoCorrect
Keep Going!
Incorrect
Integration Formula for Definite integral
$$\int_{\color{#9a00c7}{a}}^{\color{\green}{b}} f(x) dx=\left[F(x)\right]_{\color{#9a00c7}{a}}^{\color{\green}{b}}=F(\color{\green}{b})-F(\color{#9a00c7}{a})$$Integration Formula for Indefinite integral
$$\int f(x)^{\color{#004ec4}{n}} dx=\frac{f(x)^{\color{#004ec4}{n}+1}}{(\color{#004ec4}{n}+1)f'(x)}+c$$Find the Indefinite Integral$$\int (2x-1)^{2} dx$$ `=` $$\frac{(2x-1)^{\color{#004ec4}{2}+1}}{(\color{#004ec4}{2}+1)(2x-1)’}+c$$ Use the Integration Formula for Indefinite integral `=` $$\frac{(2x-1)^{3}}{3\times2}+c$$ `=` $$\frac{(2x-1)^{3}}{6}+c$$ Find the Definite Integral by using `F(x)=(2x-1)^{3}/6`$$\int_{\color{#9a00c7}{1}}^{\color{\green}{2}} (2x-1)^{2} dx$$ `=` $$\left[\frac{(2x-1)^{3}}{6}\right]_{\color{#9a00c7}{1}}^{\color{\green}{2}}$$ Use the Integration Formula for Definite integral to get the answer `=` `(2\times\color{\green}{2}-1)^3/6 – (2\times\color{#9a00c7}{1}-1)^3/6` `=` `3^3/6 – 1/6` `=` `26/6` `=` `4 1/3` `4 1/3` -
Question 5 of 5
5. Question
Integrate$$\int_{0}^{1} \frac{x^{3}-2x^{2}+4x}{x} dx$$Hint
Help VideoCorrect
Correct!
Incorrect
Integration Formula for Definite integral
$$\int_{\color{#9a00c7}{a}}^{\color{\green}{b}} f(x) dx=\left[F(x)\right]_{\color{#9a00c7}{a}}^{\color{\green}{b}}=F(\color{\green}{b})-F(\color{#9a00c7}{a})$$Integration Formula for Indefinite integral
$$\int x^{\color{#004ec4}{n}} dx=\frac{x^{\color{#004ec4}{n}+1}}{\color{#004ec4}{n}+1}+c$$Sum or Difference Rule
$$ \int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx = F(x) \pm G(x) + c $$Addition of Fractions Rule
`(a+b)/c=a/c+b/c`Find the Indefinite Integral$$\int \frac{x^{3}-2x^{2}+4x}{x} dx$$ `=` $$\int (\frac{x^{3}}{x}-\frac{2x^{2}}{x}+\frac{4x}{x}) dx$$ Apply the Addition of Fractions Rule `=` $$\int (x^{2}-2x+4) dx$$ `=` $$\int x^{2} dx-\int 2x dx+\int 4 dx$$ Use the Sum or Difference Rule `=` $$\int x^{2} dx-2\int x dx+4\int x^{0} dx$$ Take the constants out of the integral signs `=` $$\frac{x^{\color{#004ec4}{2}+1}}{\color{#004ec4}{2}+1}-2\frac{x^{\color{#004ec4}{1}+1}}{\color{#004ec4}{1}+1}+4\frac{x^{\color{#004ec4}{0}+1}}{\color{#004ec4}{0}+1}+c$$ Use the Integration Formula for Indefinite integral `=` `x^3/3-2x^{2}/2+4x^{1}/1+c` `=` `x^3/3-x^{2}+4x+c` Find the Definite Integral by using `F(x)=x^3/3-x^{2}+4x`$$\int_{\color{#9a00c7}{0}}^{\color{\green}{1}} \frac{x^{3}-2x^{2}+4x}{x} dx$$ `=` $$\left[\frac{x^3}{3}-x^{2}+4x\right]_{\color{#9a00c7}{0}}^{\color{\green}{1}}$$ Use the Integration Formula for Definite integral `=` ` (\color{\green}{1}^3/3-\color{\green}{1}^{2}+4\times\color{\green}{1})-(\color{#9a00c7}{0}^3/3-\color{#9a00c7}{0}^{2}+4\times\color{#9a00c7}{0})` `=` `(1/3-1+4)-(0-0+0)` `=` `1/3+3` `=` `3 1/3` `3 1/3`
Quizzes
- Indefinite Integrals 1
- Indefinite Integrals 2
- Indefinite Integrals 3
- Indefinite Integrals of Exponential Functions
- Indefinite Integrals of Logarithmic Functions 1
- Indefinite Integrals of Logarithmic Functions 2
- Indefinite Integrals of Trig Functions
- Definite Integrals
- Definite Integrals of Exponential Functions
- Definite Integrals of Logarithmic Functions
- Definite Integrals of Trig Functions
- Areas Between Curves and the Axis 1
- Areas Between Curves and the Axis 2
- Area Between Curves
- Volumes of Revolution 1
- Volumes of Revolution 2
- Volumes of Revolution 3
- Trapezoidal Rule
- Simpsons Rule
- Applications of Integration for Trig Functions