Topics
>
Precalculus>
Exponential Functions>
Definite Integrals of Exponential Functions>
Definite Integrals of Exponential FunctionsDefinite Integrals of Exponential Functions
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 2 questions completed
Questions:
- 1
- 2
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- Answered
- Review
-
Question 1 of 2
1. Question
Find the integral$$\int_{-1}^{3} e^{-\frac{x}{2}} dx$$Hint
Help VideoCorrect
Well Done!
Incorrect
Integrating Exponential Functions with Base “e”
$$\int e^{\color{#004ec4}{a}x+b} dx=\frac{1}{\color{#004ec4}{a}} e^{\color{#004ec4}{a}x+b} +c$$Substitute the components into the formula$$\int e^{\color{#004ec4}{a}x+b} dx$$ `=` $$\frac{1}{\color{#004ec4}{a}} e^{\color{#004ec4}{a}x+b} +c$$ $$\int_{-1}^{3} e^{\color{#004ec4}{-\frac{x}{2}}} dx$$ `=` $$\int_{-1}^{3} \frac{e^{\color{#004ec4}{-\frac{x}{2}}}}{-\frac{1}{2}}$$ Substitute known values `=` `[-2e^(-x/2)]_(-1)^3` Simplify Finally, get the difference of the upper and lower limits substituted to the integral as `x`.`[-2e^(-x/2)]_(-1)^3` `=` `[-2e^(-3/2)]-[-2e^(- (-1)/2)]` Substitute the limits `=` `-2e^(-3/2)+2e^(1/2)` Evaluate `=` `-2/e^(3/2) +2e^(1/2)` Reciprocate `e^(-3/2)` `=` `-2/(sqrt(e^3)) +2sqrte` Change the exponents into surds `-2/(sqrt(e^3)) +2sqrte` -
Question 2 of 2
2. Question
Find the integral$$\int_{1}^{2} 5e^{2x-1} dx$$Hint
Help VideoCorrect
Well Done!
Incorrect
Integrating Exponential Functions with Base “e”
$$\int e^{\color{#004ec4}{a}x+b} dx=\frac{1}{\color{#004ec4}{a}} e^{\color{#004ec4}{a}x+b} +c$$Substitute the components into the formula$$\int e^{\color{#004ec4}{a}x+b} dx$$ `=` $$\frac{1}{\color{#004ec4}{a}} e^{\color{#004ec4}{a}x+b} +c$$ $$\int_{1}^{2} 5e^{\color{#004ec4}{2}x-1} dx$$ `=` $$\left[\frac{5e^{\color{#004ec4}{2}x-1}}{2}\right]_{1}^{2}$$ Substitute known values Finally, get the difference of the upper and lower limits substituted to the integral as `x`.`[(5e^(2x-1))/2]_1^2` `=` `[(5e^(2(2)-1))/2]-[(5e^(2(1)-1))/2]` Substitute the limits `=` `(5e^3)/2-(5e)/2` Evaluate `=` `5/2 e[e^2-1]` Factorise `5/2 e[e^2-1]`