Factor by Grouping
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 7 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
- 6
- 7
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- Answered
- Review
-
Question 1 of 7
1. Question
Factor.7(x+5)+x(x+5)- 1.
-
2.
-
3.
-
4.
Hint
Help VideoCorrect
Keep Going!
Incorrect
Need TextPlayCurrent Time 0:00/Duration Time 0:00Remaining Time -0:00Stream TypeLIVELoaded: 0%Progress: 0%0:00Fullscreen00:00MutePlayback Rate1x- 2x
- 1.5x
- 1.25x
- 1x
- 0.75x
- 0.5x
Subtitles- subtitles off
Captions- captions off
- English
Chapters- Chapters
Factoring by Grouping in Pairs
a(c+d)+b(c+d)=(a+b)(c+d)Method OneFirst, label the values in the expression:a(c+d)+b(c+d)7(x+5)+x(x+5)a=7b=xc=xd=5Substitute the values into the formula given for Factoring by Grouping in Pairs.a(c+d)+b(c+d) = (a+b)(c+d) 7(x+5)+x(x+5) = (7+x)(x+5) (7+x)(x+5)Method TwoFirst, write the bracketed terms once.7(x+5)+x(x+5)(x+5)Then place the coefficients in a separate bracket.7(x+5)+x(x+5)(7+x)(x+5)(7+x)(x+5) -
Question 2 of 7
2. Question
Factor.6a(m+2)-n(m+2)-
1.
-
2.
-
3.
-
4.
Hint
Help VideoCorrect
Great Work!
Incorrect
Need TextPlayCurrent Time 0:00/Duration Time 0:00Remaining Time -0:00Stream TypeLIVELoaded: 0%Progress: 0%0:00Fullscreen00:00MutePlayback Rate1x- 2x
- 1.5x
- 1.25x
- 1x
- 0.75x
- 0.5x
Subtitles- subtitles off
Captions- captions off
- English
Chapters- Chapters
Factoring by Grouping in Pairs
a(c+d)+b(c+d)=(a+b)(c+d)Method OneFirst, label the values in the expression:a(c+d)+b(c+d)6a(m+2)-n(m+2)a=6ab=-nc=md=2Substitute the values into the formula given for Factoring by Grouping in Pairs.a(c+d)+b(c+d) = (a+b)(c+d) 6a(m+2)−n(m+2) = [6a+(−n)](m+2) = (6a-n)(m+2) (6a-n)(m+2)Method TwoFirst, write the bracketed terms once.6a(m+2)-n(m+2)(m+2)Then place the coefficients in a separate bracket.6a(m+2)-n(m+2)(6a-n)(m+2)(6a-n)(m+2) -
1.
-
Question 3 of 7
3. Question
Factor.ab+7a+3b+21-
1.
-
2.
-
3.
-
4.
Hint
Help VideoCorrect
Keep Going!
Incorrect
Need TextPlayCurrent Time 0:00/Duration Time 0:00Remaining Time -0:00Stream TypeLIVELoaded: 0%Progress: 0%0:00Fullscreen00:00MutePlayback Rate1x- 2x
- 1.5x
- 1.25x
- 1x
- 0.75x
- 0.5x
Subtitles- subtitles off
Captions- captions off
- English
Chapters- Chapters
Factoring by Grouping in Pairs
a(c+d)+b(c+d)=(a+b)(c+d)Method OneFirst, group the terms into pairs and factor them.First Pairab+7a+3b+21 = a(b+7)+3b+21 a(b+7)=ab+7a Second Paira(b+7)+3b+21 = a(b+7)+3(b+7) 3(b+7)=3b+21 Next, label the values in the expression:a(c+d)+b(c+d)a(b+7)+3(b+7)a=ab=3c=bd=7Finally, substitute the values into the formula given for Factoring by Grouping in Pairs.a(c+d)+b(c+d) = (a+b)(c+d) a(b+7)+3(b+7) = (a+3)(b+7) (a+3)(b+7)Method TwoFirst, group the terms into pairs and factor them.First Pairab+7a+3b+21 = a(b+7)+3b+21 a(b+7)=ab+7a Second Paira(b+7)+3b+21 = a(b+7)+3(b+7) 3(b+7)=3b+21 Next, write the bracketed terms once.a(b+7)+3(b+7)(b+7)Then place the coefficients in a separate bracket.a(b+7)+3(b+7)(a+3)(b+7)(a+3)(b+7) -
1.
-
Question 4 of 7
4. Question
Factor.3a+6b+8ca+16cb-
1.
-
2.
-
3.
-
4.
Hint
Help VideoCorrect
Correct!
Incorrect
Need TextPlayCurrent Time 0:00/Duration Time 0:00Remaining Time -0:00Stream TypeLIVELoaded: 0%Progress: 0%0:00Fullscreen00:00MutePlayback Rate1x- 2x
- 1.5x
- 1.25x
- 1x
- 0.75x
- 0.5x
Subtitles- subtitles off
Captions- captions off
- English
Chapters- Chapters
Factoring by Grouping in Pairs
a(c+d)+b(c+d)=(a+b)(c+d)Method OneFirst, group the terms into pairs and factor them.First Pair3a+6b+8ca+16cb = 3(a+2b)+8ca+16cb 3(a+2b)=3a+6b Second Pair3(a+2b)+8ca+16cb = a(a+2b)+8c(a+2b) 8c(a+2b)=8ca+16cb Next, label the values in the expression:a(c+d)+b(c+d)3(a+2b)+8c(a+2b)a=3b=8cc=ad=2bFinally, substitute the values into the formula given for Factoring by Grouping in Pairs.a(c+d)+b(c+d) = (a+b)(c+d) 3(a+2b)+8c(a+2b) = (3+8c)(a+2b) (3+8c)(a+2b)Method TwoFirst, group the terms into pairs and factor them.First Pair3a+6b+8ca+16cb = 3(a+2b)+8ca+16cb 3(a+2b)=3a+6b Second Pair3(a+2b)+8ca+16cb = a(a+2b)+8c(a+2b) 8c(a+2b)=8ca+16cb Next, write the bracketed terms once.3(a+2b)+8c(a+2b)(a+2b)Then place the coefficients in a separate bracket.3(a+2b)+8c(a+2b)(3+8c)(a+2b)(3+8c)(a+2b) -
1.
-
Question 5 of 7
5. Question
Factor.x-7y+xz-7yz-
1.
-
2.
-
3.
-
4.
Hint
Help VideoCorrect
Fantastic!
Incorrect
Need TextPlayCurrent Time 0:00/Duration Time 0:00Remaining Time -0:00Stream TypeLIVELoaded: 0%Progress: 0%0:00Fullscreen00:00MutePlayback Rate1x- 2x
- 1.5x
- 1.25x
- 1x
- 0.75x
- 0.5x
Subtitles- subtitles off
Captions- captions off
- English
Chapters- Chapters
Factoring by Grouping in Pairs
a(c+d)+b(c+d)=(a+b)(c+d)Method OneFirst, group the terms into pairs and factor them.Pair terms with the same variables.First Pairx−7y+xz−7yz = x(1+z)−7y−7yz x(1+z)=x+xz Second Pairx(1+z)−7y−7yz = x(1+z)−7y(1+z) -7y(1+z)=-7y-7yz Next, label the values in the expression:a(c+d)+b(c+d)x(1+z)-7y(1+z)a=xb=-7yc=1d=zFinally, substitute the values into the formula given for Factoring by Grouping in Pairs.a(c+d)+b(c+d) = (a+b)(c+d) x(1+z)−7y(1+z) = [x+(−7y)](1+z) = (x-7y)(1+z) (x-7y)(1+z)Method TwoFirst, group the terms into pairs and factor them.Pair terms with the same variables.First Pairx−7y+xz−7yz = x(1+z)−7y−7yz x(1+z)=x+xz Second Pairx(1+z)−7y−7yz = x(1+z)−7y(1+z) -7y(1+z)=-7y-7yz Next, write the bracketed terms once.x(1+z)-7y(1+z)(1+z)Then place the coefficients in a separate bracket.x(1+z)-7y(1+z)(x-7y)(1+z)(x-7y)(1+z) -
1.
-
Question 6 of 7
6. Question
Factor.m3+m2+m+1-
1.
-
2.
-
3.
-
4.
Hint
Help VideoCorrect
Nice Job!
Incorrect
Need TextPlayCurrent Time 0:00/Duration Time 0:00Remaining Time -0:00Stream TypeLIVELoaded: 0%Progress: 0%0:00Fullscreen00:00MutePlayback Rate1x- 2x
- 1.5x
- 1.25x
- 1x
- 0.75x
- 0.5x
Subtitles- subtitles off
Captions- captions off
- English
Chapters- Chapters
Factoring by Grouping in Pairs
a(c+d)+b(c+d)=(a+b)(c+d)Method OneFirst, group the terms into pairs and factor them.First Pairm3+m2+m+1 = m2(m+1)+m+1 m2(m+1)=m3+m2 Second Pairm2(m+1)+m+1 = m2(m+1)+1(m+1) 1(m+1)=m+1 Next, label the values in the expression:a(c+d)+b(c+d)m2(m+1)+1(m+1)a=m2b=1c=md=1Finally, substitute the values into the formula given for Factoring by Grouping in Pairs.a(c+d)+b(c+d) = (a+b)(c+d) m2(m+1)+1(m+1) = (m2+1)(m+1) (m2+1)(m+1)Method TwoFirst, group the terms into pairs and factor them.First Pairm3+m2+m+1 = m2(m+1)+m+1 m2(m+1)=m3+m2 Second Pairm2(m+1)+m+1 = m2(m+1)+1(m+1) 1(m+1)=m+1 Next, write the bracketed terms once.m2(m+1)+1(m+1)(m+1)Then place the coefficients in a separate bracket.m2(m+1)+1(m+1)(m2+1)(m+1)(m2+1)(m+1) -
1.
-
Question 7 of 7
7. Question
Factor.-4x(y+7)-8x2(y+7)-
1.
-
2.
-
3.
-
4.
Hint
Help VideoCorrect
Well Done!
Incorrect
Need TextPlayCurrent Time 0:00/Duration Time 0:00Remaining Time -0:00Stream TypeLIVELoaded: 0%Progress: 0%0:00Fullscreen00:00MutePlayback Rate1x- 2x
- 1.5x
- 1.25x
- 1x
- 0.75x
- 0.5x
Subtitles- subtitles off
Captions- captions off
- English
Chapters- Chapters
Factoring by Grouping in Pairs
a(c+d)+b(c+d)=(a+b)(c+d)A Greatest Common Factor is the factor of two terms with the highest value.Method OneFirst, label the values in the expression:a(c+d)+b(c+d)-4x(y+7)-8x2(y+7)a=-4xb=-8x2c=yd=7Substitute the values into the formula given for Factoring by Grouping in Pairs, then simplify.a(c+d)+b(c+d) = (a+b)(c+d) -4x(y+7)-8x2(y+7) = [−4x+(−8x2)](y+7) = (-4x-8x2)(y+7) Further factor the first bracket, (-4x-8x2), by using the Greatest Common Factor (HCF).Start by listing down their factors.Factors of -4x: -1×4× xFactors of -8x2: -1×2×4× x ×xCollect the common factors and multiply them all to get the HCF.HCF = -1×4×x = -4x Finally, factor by placing -4x outside a bracket.Also, place the given polynomial inside the bracket with each term divided by -4x, then simplify.-4x[(-4x÷-4x)+(-8x2÷-4x)] = -4x(1+2x) Since this is only the factored first bracket, include the second bracket to get the final answer.-4x(1+2x)(y+7)-4x(1+2x)(y+7)Method TwoFirst, write the bracketed terms once.-4x(y+7)-8x2(y+7)(y+7)Then place the coefficients in a separate bracket.-4x(y+7)-8x2(y+7)(-4x-8x2)(y+7)Further factor the first bracket, (-4x-8x2), by using the Greatest Common Factor (HCF).Start by listing down their factors.Factors of -4x: -1×4× xFactors of -8x2: -1×2×4× x ×xCollect the common factors and multiply them all to get the HCF.HCF = -1×4×x = -4x Finally, factor by placing -4x outside a bracket.Also, place the given polynomial inside the bracket with each term divided by -4x, then simplify.-4x[(-4x÷-4x)+(-8x2÷-4x)] = -4x(1+2x) Since this is only the factored first bracket, include the second bracket to get the final answer.-4x(1+2x)(y+7)-4x(1+2x)(y+7) -
1.
Quizzes
- Greatest Common Factor 1
- Greatest Common Factor 2
- Factor Expressions using GCF
- Factor Expressions 1
- Factor Expressions 2
- Factor Expressions with Negative Numbers
- Factor Difference of Two Squares 1
- Factor Difference of Two Squares 2
- Factor Difference of Two Squares 3
- Factor by Grouping
- Factor Difference of Two Squares (Harder) 1
- Factor Difference of Two Squares (Harder) 2
- Factor Difference of Two Squares (Harder) 3
- Factor Quadratics 1
- Factor Quadratics 2
- Factor Quadratics 3
- Factor Quadratics with Leading Coefficient more than 1 (1)
- Factor Quadratics with Leading Coefficient more than 1 (2)
- Factor Quadratics with Leading Coefficient more than 1 (3)
- Factor Quadratics (Complex)