Topics
>
Algebra 1>
Quadratic Equations and Functions>
Graphing Quadratics Using the Discriminant>
Graphing Quadratics Using the DiscriminantGraphing Quadratics Using the Discriminant
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 7 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
- 6
- 7
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- Answered
- Review
-
Question 1 of 7
1. Question
Which of the following graphs have a discriminant that is equal to `0`?
(`Delta=0`)Hint
Help VideoCorrect
Fantastic!
Incorrect
Nature of the Roots Discriminant (`Delta`) Two real roots `Delta``>``0` One real root `Delta=0` No real roots `Delta``<``0` Discriminant Formula
$$\Delta={\color{#9a00c7}{b}}^2-4\color{#00880A}{a}\color{#007DDC}{c}$$For each graph, check how many times the graph has passed through the `x` axisThis graph touched the `x` axis once, which means it has one rootHence, `Delta=0`This graph touched the `x` axis twice, which means it has two rootsHence, `Delta``>``0`This graph touched the `x` axis once, which means it has one rootHence, `Delta=0`This graph touched the `x` axis twice, which means it has two rootsHence, `Delta``>``0` -
Question 2 of 7
2. Question
Which function does not intersect with the `x` axis?Hint
Help VideoCorrect
Nice Job!
Incorrect
Nature of the Roots Discriminant (`Delta`) Two real roots `Delta``>``0` One real root `Delta=0` No real roots `Delta``<``0` Discriminant Formula
$$\Delta={\color{#9a00c7}{b}}^2-4\color{#00880A}{a}\color{#007DDC}{c}$$Compute for the discriminant of each function`x^2-4x+3=0``a=1` `b=-4` `c=3``Delta` `=` $${\color{#9a00c7}{b}}^2-4\color{#00880A}{a}\color{#007DDC}{c}$$ Discriminant Formula `=` $${\color{#9a00c7}{(-4)}}^2-4\color{#00880A}{(1)}\color{#007DDC}{(3)}$$ Substitute values `=` `16-12` `=` `4` Since `Delta``>``0`, this function has two real roots and intersects the `x` axis twice`x^2-4x+4=0``a=1` `b=-4` `c=4``Delta` `=` $${\color{#9a00c7}{b}}^2-4\color{#00880A}{a}\color{#007DDC}{c}$$ Discriminant Formula `=` $${\color{#9a00c7}{(-4)}}^2-4\color{#00880A}{(1)}\color{#007DDC}{(4)}$$ Substitute values `=` `16-16` `=` `0` Since `Delta=0`, this function has one real root and intersects the `x` axis once`x^2-4x+5=0``a=1` `b=-4` `c=5``Delta` `=` $${\color{#9a00c7}{b}}^2-4\color{#00880A}{a}\color{#007DDC}{c}$$ Discriminant Formula `=` $${\color{#9a00c7}{(-4)}}^2-4\color{#00880A}{(1)}\color{#007DDC}{(5)}$$ Substitute values `=` `16-20` `=` `-4` Since `Delta``<``0`, this function has no real roots and does not intersect the `x` axis`x^2-4x+5=0` -
Question 3 of 7
3. Question
Graph using the discriminant`y=2x^2-2x-5`Hint
Help VideoCorrect
Excellent!
Incorrect
Quadratic Formula
$$x=\frac {-\color{#9a00c7}{b} \pm \sqrt {\Delta} }{2 \color{#00880A}{a}}$$Discriminant Formula
$$\Delta={\color{#9a00c7}{b}}^2-4\color{#00880A}{a}\color{#007DDC}{c}$$First, compute for the discriminant`y=2x^2-2x-5``a=2` `b=-2` `c=-5``Delta` `=` $${\color{#9a00c7}{b}}^2-4\color{#00880A}{a}\color{#007DDC}{c}$$ Discriminant Formula `=` $${\color{#9a00c7}{-2}}^2-4\color{#00880A}{(2)}\color{#007DDC}{(-5)}$$ Substitute values `=` `4+40` `=` `44` Next, substitute the discriminant to the Quadratic Formula to find the `x` intercepts`x` `=` $$\frac {-\color{#9a00c7}{b} \pm \sqrt {\Delta} }{2 \color{#00880A}{a}}$$ Quadratic Formula `=` $$\frac {-\color{#9a00c7}{(-2)} \pm \sqrt {44} }{2 \color{#00880A}{(2)}}$$ Substitute values `=` `(2+-2sqrt11)/4` `=` `(1+-sqrt11)/2` Write each root individually$$x_1$$ `=` `(1+sqrt11)/2` `=` $$2.158$$ $$x_1$$ `=` `(1-sqrt11)/2` `=` $$-1.158$$ Mark these `2` points on the `x` axisFind the `y` intercept by substituting `x=0``y` `=` `2x^2-2x-5` `=` `2(0)^2-2(0)-5` Substitute `x=0` `=` `0-0-5` `=` `-5` Mark this on the `y` axisFinally, form the parabola by connecting the points -
Question 4 of 7
4. Question
Graph using the discriminant`y=3x^2-4x-4`Hint
Help VideoCorrect
Fantastic!
Incorrect
Quadratic Formula
$$x=\frac {-\color{#9a00c7}{b} \pm \sqrt {\Delta} }{2 \color{#00880A}{a}}$$Discriminant Formula
$$\Delta={\color{#9a00c7}{b}}^2-4\color{#00880A}{a}\color{#007DDC}{c}$$First, compute for the discriminant`y=3x^2-4x-4``a=3` `b=-4` `c=-4``Delta` `=` $${\color{#9a00c7}{b}}^2-4\color{#00880A}{a}\color{#007DDC}{c}$$ Discriminant Formula `=` $${\color{#9a00c7}{-4}}^2-4\color{#00880A}{(3)}\color{#007DDC}{(-4)}$$ Substitute values `=` `16+48` `=` `64` Next, substitute the discriminant to the Quadratic Formula to find the `x` intercepts`x` `=` $$\frac {-\color{#9a00c7}{b} \pm \sqrt {\Delta} }{2 \color{#00880A}{a}}$$ Quadratic Formula `=` $$\frac {-\color{#9a00c7}{(-4)} \pm \sqrt {64} }{2 \color{#00880A}{(3)}}$$ Substitute values `=` `(4+-8)/6` Write each root individually$$x_1$$ `=` `(4+8)/6` `=` `12/6` `=` `2` $$x_1$$ `=` `(4-8)/6` `=` `(-4)/6` `=` `-2/3` Mark these `2` points on the `x` axisFind the `y` intercept by substituting `x=0``y` `=` `3x^2-4x-4` `=` `3(0)^2-4(0)-4` Substitute `x=0` `=` `0-0-4` `=` `-4` Mark this on the `y` axisFinally, form the parabola by connecting the points -
Question 5 of 7
5. Question
Graph using the discriminant`y=2x^2+3x-1`Hint
Help VideoCorrect
Keep Going!
Incorrect
Quadratic Formula
$$x=\frac {-\color{#9a00c7}{b} \pm \sqrt {\Delta} }{2 \color{#00880A}{a}}$$Discriminant Formula
$$\Delta={\color{#9a00c7}{b}}^2-4\color{#00880A}{a}\color{#007DDC}{c}$$First, compute for the discriminant`y=2x^2+3x-1``a=2` `b=3` `c=-1``Delta` `=` $${\color{#9a00c7}{b}}^2-4\color{#00880A}{a}\color{#007DDC}{c}$$ Discriminant Formula `=` $${\color{#9a00c7}{3}}^2-4\color{#00880A}{(2)}\color{#007DDC}{(-1)}$$ Substitute values `=` `9+8` `=` `17` Next, substitute the discriminant to the Quadratic Formula to find the `x` intercepts`x` `=` $$\frac {-\color{#9a00c7}{b} \pm \sqrt {\Delta} }{2 \color{#00880A}{a}}$$ Quadratic Formula `=` $$\frac {-\color{#9a00c7}{3} \pm \sqrt {17} }{2 \color{#00880A}{(2)}}$$ Substitute values `=` `(-3+-sqrt17)/4` Write each root individually$$x_1$$ `=` `(-3+sqrt17)/4` `=` `1.123/4` `=` `0.281` $$x_1$$ `=` `(-3-sqrt17)/4` `=` `(-7.123)/4` `=` `-1.781` Mark these `2` points on the `x` axisFind the `y` intercept by substituting `x=0``y` `=` `2x^2+3x-1` `=` `2(0)^2+3(0)-1` Substitute `x=0` `=` `0+0-1` `=` `-1` Mark this on the `y` axisFinally, form the parabola by connecting the points -
Question 6 of 7
6. Question
Graph using the discriminant`y=x^2-6x+9`Hint
Help VideoCorrect
Fantastic!
Incorrect
Quadratic Formula
$$x=\frac {-\color{#9a00c7}{b} \pm \sqrt {\Delta} }{2 \color{#00880A}{a}}$$Axis of Symmetry
$$x=\frac{-\color{#9a00c7}{b}}{2\color{#00880A}{a}}$$Discriminant Formula
$$\Delta={\color{#9a00c7}{b}}^2-4\color{#00880A}{a}\color{#007DDC}{c}$$First, find the axis of symmetry`y=x^2-6x+9``a=1` `b=-6` `c=9``x` `=` $$\frac{-\color{#9a00c7}{b}}{2\color{#00880A}{a}}$$ Axis of Symmetry `x` `=` $$\frac{-\color{#9a00c7}{(-6)}}{2\color{#00880A}{(1)}}$$ Substitute values `x` `=` `6/2` `x` `=` `3` Find where the graph touches the axis of symmetry by substituting `x=3` to the function. This would be the vertex`y` `=` `x^2-6x+9` `=` `(3)^2-6(3)+9` Substitute `x=3` `=` `9-18+9` `=` `0` Hence, the vertex is at `(3,0)`Next, compute for the discriminant`Delta` `=` $${\color{#9a00c7}{b}}^2-4\color{#00880A}{a}\color{#007DDC}{c}$$ Discriminant Formula `=` $${\color{#9a00c7}{-6}}^2-4\color{#00880A}{(1)}\color{#007DDC}{(9)}$$ Substitute values `=` `36-36` `=` `0` Substitute the discriminant to the Quadratic Formula to find the `x` intercepts`x` `=` $$\frac {-\color{#9a00c7}{b} \pm \sqrt {\Delta} }{2 \color{#00880A}{a}}$$ Quadratic Formula `=` $$\frac {-\color{#9a00c7}{(-6)} \pm \sqrt {0} }{2 \color{#00880A}{(1)}}$$ Substitute values `=` `(6+-0)/2` `=` `(6)/2` `=` `3` There is only one root or `x` intercept which is at `(3,0)`Recall that the `(3,0)` is also the vertexFind the `y` intercept by substituting `x=0``y` `=` `x^2-6x+9` `=` `(0)^2-6(0)+9` Substitute `x=0` `=` `0-0+9` `=` `9` Mark this on the `y` axisFinally, form the parabola by connecting the points -
Question 7 of 7
7. Question
Graph using the discriminant`y=x^2+2x-8`Hint
Help VideoCorrect
Keep Going!
Incorrect
Quadratic Formula
$$x=\frac {-\color{#9a00c7}{b} \pm \sqrt {\Delta} }{2 \color{#00880A}{a}}$$Axis of Symmetry
$$x=\frac{-\color{#9a00c7}{b}}{2\color{#00880A}{a}}$$Discriminant Formula
$$\Delta={\color{#9a00c7}{b}}^2-4\color{#00880A}{a}\color{#007DDC}{c}$$First, find the axis of symmetry`y=x^2+2x-8``a=1` `b=2` `c=-8``x` `=` $$\frac{-\color{#9a00c7}{b}}{2\color{#00880A}{a}}$$ Axis of Symmetry `x` `=` $$\frac{-\color{#9a00c7}{2}}{2\color{#00880A}{(1)}}$$ Substitute values `x` `=` `-2/2` `x` `=` `-1` Find where the graph touches the axis of symmetry by substituting `x=3` to the function. This would be the vertex`y` `=` `x^2+2x-8` `=` `(-1)^2+2(-1)-8` Substitute `x=-1` `=` `1-2-8` `=` `-9` Hence, the vertex is at `(-1,-9)`Next, compute for the discriminant`Delta` `=` $${\color{#9a00c7}{b}}^2-4\color{#00880A}{a}\color{#007DDC}{c}$$ Discriminant Formula `=` $${\color{#9a00c7}{-2}}^2-4\color{#00880A}{(1)}\color{#007DDC}{(-8)}$$ Substitute values `=` `4+32` `=` `36` Substitute the discriminant to the Quadratic Formula to find the `x` intercepts`x` `=` $$\frac {-\color{#9a00c7}{b} \pm \sqrt {\Delta} }{2 \color{#00880A}{a}}$$ Quadratic Formula `=` $$\frac {-\color{#9a00c7}{2} \pm \sqrt {36} }{2 \color{#00880A}{(1)}}$$ Substitute values `=` `(-2+-6)/2` `=` `-1+-3` `=` `-1-3,-1+3` `x` `=` `-4,2` Finally, form the parabola by connecting the points
Quizzes
- Solve Quadratics by Factoring
- The Quadratic Formula
- Completing the Square 1
- Completing the Square 2
- Intro to Quadratic Functions (Parabolas) 1
- Intro to Quadratic Functions (Parabolas) 2
- Intro to Quadratic Functions (Parabolas) 3
- Graph Quadratic Functions in Standard Form 1
- Graph Quadratic Functions in Standard Form 2
- Graph Quadratic Functions by Completing the Square
- Graph Quadratic Functions in Vertex Form
- Write a Quadratic Equation from the Graph
- Write a Quadratic Equation Given the Vertex and Another Point
- Quadratic Inequalities 1
- Quadratic Inequalities 2
- Quadratics Word Problems 1
- Quadratics Word Problems 2
- Quadratic Identities
- Graphing Quadratics Using the Discriminant
- Positive and Negative Definite
- Applications of the Discriminant 1
- Applications of the Discriminant 2
- Combining Methods for Solving Quadratic Equations