Topics
>
Statistics and Probability>
Scatter Plots>
Least Squares Regression>
Least Squares RegressionLeast Squares Regression
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 13 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- Answered
- Review
-
Question 1 of 13
1. Question
Solve for the equation of the least squares line of best fit.`barx=12``bary=19``sigma_x=1.8``sigma_y=4``r=0.9`- `y=` (2)`x` (-5)
Hint
Help VideoCorrect
Fantastic!
Incorrect
The Least Squares Line of Best Fit is a more accurate interpretation of a correlation.Gradient Formula
$$\color{#007DDC}{m}=r\cdot\frac{\color{#9a00c7}{\sigma_y}}{\color{#00880A}{\sigma_x}}$$`y` intercept Formula
$$\color{#e65021}{b}=\bar{y}-\color{#007DDC}{m}\bar{x}$$Gradient-Intercept Form
`y=``m``x+``b`First, use the gradient formula to find the gradient or slope of the line.`m` `=` $$r\cdot\frac{\color{#9a00c7}{\sigma_y}}{\color{#00880A}{\sigma_x}}$$ Gradient Formula `=` $$0.9\cdot\frac{\color{#9a00c7}{4}}{\color{#00880A}{1.8}}$$ Substitute values `m` `=` `2` Next, find the `y` intercept.`b` `=` $$\bar{y}-\color{#007DDC}{m}\bar{x}$$ `y` intercept Formula `=` $$19-(\color{#007DDC}{2})12$$ Substitute values `=` `19-24` Evaluate `b` `=` `-5` Finally, substitute the values into the gradient-intercept form`m=2``b=-5``y` `=` `m``x+``b` Gradient-Intercept Form `y` `=` `2``x-``5` Substitute values `y=2x-5` -
Question 2 of 13
2. Question
The scores of `5` students for their Maths and Science tests were listed in a table. Find the equation of the least squares line of best fit.`\text(Maths)` `x` 81 65 70 52 87 `\text(Science)` `y` 85 72 63 68 91 Round your answer to two decimal places- `S=` (0.69)`M` (-26.81)
Hint
Help VideoCorrect
Excellent!
Incorrect
The Least Squares Line of Best Fit is a more accurate interpretation of a correlation.Gradient Formula
$$\color{#007DDC}{m}=r\cdot\frac{\color{#9a00c7}{\sigma_y}}{\color{#00880A}{\sigma_x}}$$`y` intercept Formula
$$\color{#e65021}{b}=\bar{y}-\color{#007DDC}{m}\bar{x}$$Gradient-Intercept Form
`y=``m``x+``b`First, use a calculator and find the following values.Note that the steps may vary depending on the model of your calculator.`(1)` Press on Mode and select Statistics.`(2)` Choose the options for `A+bx` among the mode options.`(3)` Input the `x` values followed by the `=` button on the left column.`(4)` Repeat the same steps for the `y` values on the right column.`(5)` Press AC to clear the values.`(6)` Press Shift`+1+4` and select the option for `barx` to get the mean of `x`.`(7)` Press Shift`+1+4` and select the option for `sigma_x` to get the standard deviation of `x`.`(8)` Press Shift`+1+4` and select the option for `bary` to get the mean of `y`.`(9)` Press Shift`+1+4` and select the option for `sigma_y` to get the standard deviation of `y`.`(10)` Press Shift`+1+5` to get the correlation coefficient `(r)`.Following the steps above, the given values would be the following:`barx` `=` `71 \text((Maths))` `bary` `=` `75.8 \text((Science))` `sigma_x` `=` `12.28` `sigma_y` `=` `10.53` `r` `=` `0.8` Next, use the gradient formula to find the gradient or slope of the line.`m` `=` $$r\cdot\frac{\color{#9a00c7}{\sigma_y}}{\color{#00880A}{\sigma_x}}$$ Gradient Formula `=` $$0.8\cdot\frac{\color{#9a00c7}{10.53}}{\color{#00880A}{12.28}}$$ Substitute values `m` `=` `0.69` Next, find the `y` intercept.`b` `=` $$\bar{y}-\color{#007DDC}{m}\bar{x}$$ `y` intercept Formula `=` $$75.68-(\color{#007DDC}{0.69})71$$ Substitute values `b` `=` `26.81` Finally, substitute the values into the gradient-intercept form`m=0.69``b=26.81``y` `=` `m``x+``b` Gradient-Intercept Form `y` `=` `0.69``x+``26.81` Substitute values `S` `=` `0.69M+26.81` Change `y` and `x` to `S` and `M` respectively `S=0.69M+26.81` -
Question 3 of 13
3. Question
The scores of `5` students for their Maths and Science tests were listed in a table. Draw the least square line of best fit given that its equation is `S=0.69M+26.81`.Hint
Help VideoCorrect
Keep Going!
Incorrect
The Least Squares Line of Best Fit is a more accurate interpretation of a correlation.Gradient Formula
$$\color{#007DDC}{m}=r\cdot\frac{\color{#9a00c7}{\sigma_y}}{\color{#00880A}{\sigma_x}}$$`y` intercept Formula
$$\color{#e65021}{b}=\bar{y}-\color{#007DDC}{m}\bar{x}$$Gradient-Intercept Form
`y=``m``x+``b`First, create a table of values illustrating the values of Maths `(x)` and Science `(y)`We can use `0`, `50` and `100` as test values of `x`.`x` `0` `50` `100` `y` Next, recall that `S=y` and `M=x`Substitute the values of `x` to `M` to solve for the `y` values.`x=0``S` `=` `0.69M+26.81` `S` `=` `0.69(0)+26.81` Substitute `x=0` `S` `=` `26.81` `x=50``S` `=` `0.69M+26.81` `S` `=` `0.69(50)+26.81` Substitute `x=50` `S` `=` `61.3` `x=100``S` `=` `0.69M+26.81` `S` `=` `0.69(100)+26.81` Substitute `x=100` `S` `=` `95.8` `x` `0` `50` `100` `y` `26.81` `61.3` `95.8` Finally, plot these three points and draw a line connecting them.`S=0.69M+26.81` -
Question 4 of 13
4. Question
The weekly exercise routine and pulse rate of `10` students were recorded on this table of values. Given that `r=-0.99`, find the equation of the least squares line of best fit.`\text(Exercise)` 0.5 1 2 3 4 5 6 7 8 9 `\text(BPM)` 80 75 70 67 62 61 55 52 48 46 Round your answer to two decimal places- `B=` (-3.84)`E+` (79.07)
Hint
Help VideoCorrect
Nice Job!
Incorrect
The Least Squares Line of Best Fit is a more accurate interpretation of a correlation.Gradient Formula
$$\color{#007DDC}{m}=r\cdot\frac{\color{#9a00c7}{\sigma_y}}{\color{#00880A}{\sigma_x}}$$`y` intercept Formula
$$\color{#e65021}{b}=\bar{y}-\color{#007DDC}{m}\bar{x}$$Gradient-Intercept Form
`y=``m``x+``b`First, use a calculator and find the following values.Note that the steps may vary depending on the model of your calculator.`(1)` Press on Mode and select Statistics.`(2)` Choose the options for `A+bx` among the mode options.`(3)` Input the `x` values followed by the `=` button on the left column.`(4)` Repeat the same steps for the `y` values on the right column.`(5)` Press AC to clear the values.`(6)` Press Shift`+1+4` and select the option for `barx` to get the mean of `x`.`(7)` Press Shift`+1+4` and select the option for `sigma_x` to get the standard deviation of `x`.`(8)` Press Shift`+1+4` and select the option for `bary` to get the mean of `y`.`(9)` Press Shift`+1+4` and select the option for `sigma_y` to get the standard deviation of `y`.Following the steps above, the given values would be the following:`barx` `=` `4.55 \text((Exercise))` `bary` `=` `61.6 \text((BPM))` `sigma_x` `=` `2.80` `sigma_y` `=` `10.87` Next, use the gradient formula to find the gradient or slope of the line.`r` `=` `-0.99` `m` `=` $$r\cdot\frac{\color{#9a00c7}{\sigma_y}}{\color{#00880A}{\sigma_x}}$$ Gradient Formula `=` $$-0.99\cdot\frac{\color{#9a00c7}{10.87}}{\color{#00880A}{2.80}}$$ Substitute values `m` `=` `-3.84` Next, find the `y` intercept.`b` `=` $$\bar{y}-\color{#007DDC}{m}\bar{x}$$ `y` intercept Formula `=` $$61.6-(\color{#007DDC}{-3.84})4.55$$ Substitute values `b` `=` `79.07` Finally, substitute the values into the gradient-intercept form`m=-3.84``b=79.07``y` `=` `m``x+``b` Gradient-Intercept Form `y` `=` `-3.84``x+``79.07` Substitute values `B` `=` `-3.84E+79.07` Change `y` and `x` to `B` and `E` respectively `B=-3.84E+79.07` -
Question 5 of 13
5. Question
The weekly exercise routine and pulse rate of `10` students were recorded to this table of values. Draw the least square line of best fit given that its equation is `B=-3.84E+79.07`.Hint
Help VideoCorrect
Correct!
Incorrect
The Least Squares Line of Best Fit is a more accurate interpretation of a correlation.Gradient Formula
$$\color{#007DDC}{m}=r\cdot\frac{\color{#9a00c7}{\sigma_y}}{\color{#00880A}{\sigma_x}}$$`y` intercept Formula
$$\color{#e65021}{b}=\bar{y}-\color{#007DDC}{m}\bar{x}$$Gradient-Intercept Form
`y=``m``x+``b`First, create a table of values illustrating the values of Exercise `(x)` and BPM `(y)`We can use `0`, `5` and `10` as test values of `x`.`x` `0` `5` `10` `y` Next, recall that `B=y` and `E=x`Substitute the values of `x` to `E` to solve for the `y` values.`x=0``B` `=` `-3.84E+79.07` `B` `=` `-3.84(0)+79.07` Substitute `x=0` `B` `=` `79.07` `x=5``B` `=` `-3.84E+79.07` `B` `=` `-3.84(5)+79.07` Substitute `x=5` `B` `=` `59.87` `x=10``B` `=` `-3.84E+79.07` `B` `=` `-3.84(10)+79.07` Substitute `x=10` `B` `=` `40.67` `x` `0` `5` `10` `y` `79.07` `59.87` `40.67` Finally, plot these three points and draw a line connecting them.`B=-3.84E+79.07` -
Question 6 of 13
6. Question
The height and weight of `10` girls were listed in a table of values. Find the equation of the least squares line of best fit.`\text(Height)` 162 167 179 162 149 154 144 157 172 160 `\text(Weight)` 74 65 87 54 53 61 57 71 79 58 Round your answer to two decimal places- `W=` (0.86)`H` (-72.22)
Hint
Help VideoCorrect
Well Done!
Incorrect
The Least Squares Line of Best Fit is a more accurate interpretation of a correlation.Gradient Formula
$$\color{#007DDC}{m}=r\cdot\frac{\color{#9a00c7}{\sigma_y}}{\color{#00880A}{\sigma_x}}$$`y` intercept Formula
$$\color{#e65021}{b}=\bar{y}-\color{#007DDC}{m}\bar{x}$$Gradient-Intercept Form
`y=``m``x+``b`First, use a calculator and find the following values.Note that the steps may vary depending on the model of your calculator.`(1)` Press on Mode and select Statistics.`(2)` Choose the options for `A+bx` among the mode options.`(3)` Input the `x` values followed by the `=` button on the left column.`(4)` Repeat the same steps for the `y` values on the right column.`(5)` Press AC to clear the values.`(6)` Press Shift`+1+4` and select the option for `barx` to get the mean of `x`.`(7)` Press Shift`+1+4` and select the option for `sigma_x` to get the standard deviation of `x`.`(8)` Press Shift`+1+4` and select the option for `bary` to get the mean of `y`.`(9)` Press Shift`+1+4` and select the option for `sigma_y` to get the standard deviation of `y`.`(10)` Press Shift`+1+5` to get the correlation coefficient `(r)`.Following the steps above, the given values would be the following:`barx` `=` `160.6 \text((Height))` `bary` `=` `65.9 \text((Weight))` `sigma_x` `=` `9.90` `sigma_y` `=` `10.88` `r` `=` `0.78` Next, use the gradient formula to find the gradient or slope of the line.`m` `=` $$r\cdot\frac{\color{#9a00c7}{\sigma_y}}{\color{#00880A}{\sigma_x}}$$ Gradient Formula `=` $$0.78\cdot\frac{\color{#9a00c7}{10.88}}{\color{#00880A}{9.90}}$$ Substitute values `m` `=` `0.86` Next, find the `y` intercept.`b` `=` $$\bar{y}-\color{#007DDC}{m}\bar{x}$$ `y` intercept Formula `=` $$65.9-(\color{#007DDC}{0.86})160.6$$ Substitute values `b` `=` `-72.22` Finally, substitute the values into the gradient-intercept form`m=0.86``b=-72.22``y` `=` `m``x+``b` Gradient-Intercept Form `y` `=` `0.86``x``-72.22` Substitute values `W` `=` `0.86H-72.22` Change `y` and `x` to `W` and `H` respectively `W=0.86H-72.22` -
Question 7 of 13
7. Question
The height and weight of `10` girls were listed in a table of values. Given that the equation of the least square line of best fit is `W=0.86H-72.22`, find the weight of a girl with a height of `175 \text(cm)`.Round your answer to two decimal places- `W=` (77.73) `\text(kg)`
Hint
Help VideoCorrect
Correct!
Incorrect
The Least Squares Line of Best Fit is a more accurate interpretation of a correlation.Gradient Formula
$$\color{#007DDC}{m}=r\cdot\frac{\color{#9a00c7}{\sigma_y}}{\color{#00880A}{\sigma_x}}$$`y` intercept Formula
$$\color{#e65021}{b}=\bar{y}-\color{#007DDC}{m}\bar{x}$$Gradient-Intercept Form
`y=``m``x+``b`Since we are given the value `H=175`, we can substitute it to the formula and solve for the weight `(W)`.`W` `=` `0.86H-72.22` `W` `=` `0.86(175)-72.22` Substitute `H=175` `W` `=` `77.73` `W=77.73 \text(kg)` -
Question 8 of 13
8. Question
The height and arm span of `8` female swimmers were listed in a table of values. Find the means, standard deviation and the correlation coefficient of the two set of values.`\text(Height)` 189 190 197 186 195 185 192 196 `\text(Arm Span)` 190 191 199 187 198 186 194 200 Round your answer to three decimal places-
`(i) barx=` (191.25)`(ii) bary=` (190.125)`(iii) sigma_x=` (4.235)`(iv) sigma_y=` (5.110)`(v) r=` (0.99)
Hint
Help VideoCorrect
Great Work!
Incorrect
The Least Squares Line of Best Fit is a more accurate interpretation of a correlation.Gradient Formula
$$\color{#007DDC}{m}=r\cdot\frac{\color{#9a00c7}{\sigma_y}}{\color{#00880A}{\sigma_x}}$$`y` intercept Formula
$$\color{#e65021}{b}=\bar{y}-\color{#007DDC}{m}\bar{x}$$Gradient-Intercept Form
`y=``m``x+``b`Let `x` represent `text(Height) = H`Let `y` represent `text(Arm Span) = S`First, use a calculator and find the following values.Note that the steps may vary depending on the model of your calculator.`(1)` Press on Mode and select Statistics.`(2)` Choose the options for `A+bx` among the mode options.`(3)` Input the `x` values followed by the `=` button on the left column.`(4)` Repeat the same steps for the `y` values on the right column.`(5)` Press AC to clear the values.`(6)` Press Shift`+1+4` and select the option for `barx` to get the mean of `x`.`(7)` Press Shift`+1+4` and select the option for `sigma_x` to get the standard deviation of `x`.`(8)` Press Shift`+1+4` and select the option for `bary` to get the mean of `y`.`(9)` Press Shift`+1+4` and select the option for `sigma_y` to get the standard deviation of `y`.`(10)` Press Shift`+1+5` to get the correlation coefficient `(r)`.Following the steps above, the given values would be the following:`barx` `=` `191.25 \text((Height))` `bary` `=` `190.125 \text((Arm Span))` `sigma_x` `=` `4.235` `sigma_y` `=` `5.110` `r` `=` `0.99` `barx=191.25``bary=190.125``sigma_x=4.235``sigma_y=5.110``r=0.99` -
-
Question 9 of 13
9. Question
The height and arm span of `8` female swimmers were listed in a table of values. Find the equation of the least squares line of best fit.`\text(Height)` 189 190 197 186 195 185 192 196 `\text(Arm Span)` 190 191 199 187 198 186 194 200 Round your answer to three decimal places- `S=` (1.195)`H` (-35.419)
Hint
Help VideoCorrect
Great Work!
Incorrect
The Least Squares Line of Best Fit is a more accurate interpretation of a correlation.Gradient Formula
$$\color{#007DDC}{m}=r\cdot\frac{\color{#9a00c7}{\sigma_y}}{\color{#00880A}{\sigma_x}}$$`y` intercept Formula
$$\color{#e65021}{b}=\bar{y}-\color{#007DDC}{m}\bar{x}$$Gradient-Intercept Form
`y=``m``x+``b`From the previous question, the given values would be the following:`barx` `=` `191.25 \text((Height))` `bary` `=` `190.125 \text((Arm Span))` `sigma_x` `=` `4.235` `sigma_y` `=` `5.110` `r` `=` `0.99` Use the gradient formula to find the gradient or slope of the line.`m` `=` $$r\cdot\frac{\color{#9a00c7}{\sigma_y}}{\color{#00880A}{\sigma_x}}$$ Gradient Formula `=` $$0.99\cdot\frac{\color{#9a00c7}{5.11}}{\color{#00880A}{4.235}}$$ Substitute values `m` `=` `1.195` Next, find the `y` intercept.`b` `=` $$\bar{y}-\color{#007DDC}{m}\bar{x}$$ `y` intercept Formula `=` $$190.125-(\color{#007DDC}{1.195})191.25$$ Substitute values `b` `=` `-35.419` Finally, substitute the values into the gradient-intercept form`m=1.195``b=-35.419``y` `=` `m``x+``b` Gradient-Intercept Form `y` `=` `1.195``x``-35.419` Substitute values `S` `=` `1.195H-35.419` Change `y` and `x` to `S` and `H` respectively `S=1.195H-35.419` -
Question 10 of 13
10. Question
The height and arm span of `8` female swimmers were listed in a table of values. Given that the equation of the least square line of best fit is `S=1.195H-35.419`, find the arm span of a girl with a height of `201 \text(cm)`.Round your answer to three decimal places- `S=` (204.776) `\text(cm)`
Hint
Help VideoCorrect
Well Done!
Incorrect
The Least Squares Line of Best Fit is a more accurate interpretation of a correlation.Gradient Formula
$$\color{#007DDC}{m}=r\cdot\frac{\color{#9a00c7}{\sigma_y}}{\color{#00880A}{\sigma_x}}$$`y` intercept Formula
$$\color{#e65021}{b}=\bar{y}-\color{#007DDC}{m}\bar{x}$$Gradient-Intercept Form
`y=``m``x+``b`Since we are given the value `H=201`, we can substitute it to the formula and solve for the arm span `(S)`.`S` `=` `1.195H-35.419` `S` `=` `1.195(201)-35.419` Substitute `H=201` `S` `=` `204.776` `S=204.776 \text(cm)` -
Question 11 of 13
11. Question
The height and weight of `10` girls were listed in a table of values. Draw the least square line of best fit given that its equation is `W=0.86H-72.22`.Hint
Help VideoCorrect
Nice Job!
Incorrect
The Least Squares Line of Best Fit is a more accurate interpretation of a correlation.Gradient Formula
$$\color{#007DDC}{m}=r\cdot\frac{\color{#9a00c7}{\sigma_y}}{\color{#00880A}{\sigma_x}}$$`y` intercept Formula
$$\color{#e65021}{b}=\bar{y}-\color{#007DDC}{m}\bar{x}$$Gradient-Intercept Form
`y=``m``x+``b`First, create a table of values illustrating the values of Height `(x)` and Weight `(y)`We can use `145`, `160` and `180` as test values of `x`.`x` `145` `160` `180` `y` Next, recall that `W=y` and `H=x`Substitute the values of `x` to `H` to solve for the `y` values.`x=145``W` `=` `0.86H-72.22` `W` `=` `0.86(145)-72.22` Substitute `x=145` `W` `=` `52.48` `x=160``W` `=` `0.86H-72.22` `W` `=` `0.86(160)-72.22` Substitute `x=160` `W` `=` `65.30` `x=180``W` `=` `0.86H-72.22` `W` `=` `0.86(180)-72.22` Substitute `x=180` `W` `=` `82.58` `x` `145` `160` `180` `y` `52.48` `65.30` `82.58` Finally, plot these three points and draw a line connecting them.`W=0.86H-72.22` -
Question 12 of 13
12. Question
Solve for the gradient given the following values.`barx=28.5``bary=53.4``b=-3.6`- `m=` (2)
Hint
Help VideoCorrect
Excellent!
Incorrect
The Least Squares Line of Best Fit is a more accurate interpretation of a correlation.Gradient Formula
$$\color{#007DDC}{m}=r\cdot\frac{\color{#9a00c7}{\sigma_y}}{\color{#00880A}{\sigma_x}}$$`y` intercept Formula
$$\color{#e65021}{b}=\bar{y}-\color{#007DDC}{m}\bar{x}$$Gradient-Intercept Form
`y=``m``x+``b`Use the gradient-intercept form and substitute the known values to solve for `m`Use `bary` and `barx` as substitute for `y` and `x`, respectively.`b=-3.6``barx=28.5``bary=53.4``bary` `=` `m``barx+``b` Gradient-Intercept Form `53.4` `=` `(``m``)28.5-``3.6` Substitute values `53.4` `+3.6` `=` `28.5m-3.6` `+3.6` Add `3.6` to both sides `57``divide28.5` `=` `28.5m``divide28.5` Divide both sides by `28.5` `2` `=` `m` `m` `=` `2` `m=2` -
Question 13 of 13
13. Question
Solve for the `y` intercept given the following values.`barx=40.5``bary=51.2``m=2/5`- `b=` (35)
Hint
Help VideoCorrect
Keep Going!
Incorrect
The Least Squares Line of Best Fit is a more accurate interpretation of a correlation.Gradient Formula
$$\color{#007DDC}{m}=r\cdot\frac{\color{#9a00c7}{\sigma_y}}{\color{#00880A}{\sigma_x}}$$`y` intercept Formula
$$\color{#e65021}{b}=\bar{y}-\color{#007DDC}{m}\bar{x}$$Gradient-Intercept Form
`y=``m``x+``b`Substitute the known values to the `y` intercept formula.`m=2/5``barx=40.5``bary=51.2``b` `=` $$\bar{y}-\color{#007DDC}{m}\bar{x}$$ `y` intercept Formula `=` $$51.2-\left(\color{#007DDC}{\frac{2}{5}}\right)40.5$$ Substitute values `=` `51.2-16.2` Evaluate `b` `=` `35` `b=35`