Logarithmic Equations 1
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 4 questions completed
Questions:
- 1
- 2
- 3
- 4
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- Answered
- Review
-
Question 1 of 4
1. Question
Solve for `N``log_5 N=-3`- `N=` (1/125)
Hint
Help VideoCorrect
Great Work!
Incorrect
Exponent Form
$$\color{#00880a}{N}={\color{#9a00c7}{a}}^x$$Logarithmic Form
$$\log_{\color{#9a00c7}{a}} \color{#00880a}{N}=x$$Convert the equation to exponent form by first identifying the components$$\log_{\color{#9a00c7}{a}} \color{#00880a}{N}$$ `=` $$x$$ $$\log_{\color{#9a00c7}{5}} \color{#00880a}{N}$$ `=` $$-3$$ `N` `=` `N` `a` `=` `5` `x` `=` `-3` Substitute the components into the exponent form$$\color{#00880a}{N}$$ `=` $${\color{#9a00c7}{a}}^x$$ $$\color{#00880a}{N}$$ `=` $${\color{#9a00c7}{5}}^{-3}$$ Solve for the value of `N``N` `=` `5^(-3)` `N` `=` `1/(5^3)` Reciprocate `5^(-3)` `N` `=` `1/125` `N=1/125` -
Question 2 of 4
2. Question
Solve for `N``log_3 N=-4`- `N=` (1/81)
Hint
Help VideoCorrect
Correct!
Incorrect
Exponent Form
$$\color{#00880a}{N}={\color{#9a00c7}{a}}^x$$Logarithmic Form
$$\log_{\color{#9a00c7}{a}} \color{#00880a}{N}=x$$Convert the equation to exponent form by first identifying the components$$\log_{\color{#9a00c7}{a}} \color{#00880a}{N}$$ `=` $$x$$ $$\log_{\color{#9a00c7}{3}} \color{#00880a}{N}$$ `=` $$-4$$ `N` `=` `N` `a` `=` `3` `x` `=` `-4` Substitute the components into the exponent form$$\color{#00880a}{N}$$ `=` $${\color{#9a00c7}{a}}^x$$ $$\color{#00880a}{N}$$ `=` $${\color{#9a00c7}{3}}^{-4}$$ Solve for the value of `N``N` `=` `3^(-4)` `N` `=` `1/(3^4)` Reciprocate `3^(-4)` `N` `=` `1/81` `N=1/81` -
Question 3 of 4
3. Question
Solve for `a``log_a 27=3`- `a=` (3)
Hint
Help VideoCorrect
Keep Going!
Incorrect
Exponent Form
$$\color{#00880a}{N}={\color{#9a00c7}{a}}^x$$Logarithmic Form
$$\log_{\color{#9a00c7}{a}} \color{#00880a}{N}=x$$Convert the equation to exponent form by first identifying the components$$\log_{\color{#9a00c7}{a}} \color{#00880a}{N}$$ `=` $$x$$ $$\log_{\color{#9a00c7}{a}} \color{#00880a}{27}$$ `=` $$3$$ `N` `=` `27` `a` `=` `a` `x` `=` `3` Substitute the components into the exponent form$$\color{#00880a}{N}$$ `=` $${\color{#9a00c7}{a}}^x$$ $$\color{#00880a}{27}$$ `=` $${\color{#9a00c7}{a}}^{3}$$ Solve for the value of `a``27` `=` `a^3` `root (3)(27)` `=` `root (3)(a^3)` Find the cube root of both sides `3` `=` `a` `a` `=` `3` `a=3` -
Question 4 of 4
4. Question
Solve for `x``log_b x=3log_b 2+log_b 4`- `x=` (32)
Hint
Help VideoCorrect
Great Work!
Incorrect
Laws of Logarithms
$$\log_{\color{#9a00c7}{b}} {\color{#00880A}{x}\color{#e65021}{y}}=\log_{\color{#9a00c7}{b}} \color{#00880A}{x} + \log_{\color{#9a00c7}{b}} \color{#e65021}{y}$$$$\log_b x^\color{#004ec4}{p}=\color{#004ec4}{p}\log_b x$$Remove the coefficient from the second term$$\log_{b} x$$ `=` $$3\log_{b} 2+\log_{b} 4$$ $$\log_{b} x$$ `=` $$\log_{b} 2^\color{#004ec4}{3}+\log_{b} 4$$ `log_b x^p=p log_b x` $$\log_{b} x$$ `=` $$\log_{b} 8+\log_{b} 4$$ Contract the right side$$\log_{b} x$$ `=` $$\log_\color{#9a00c7}{b} \color{#00880A}{8}+\log_\color{#9a00c7}{b} \color{#e65021}{4}$$ $$\log_{b} x$$ `=` $$\log_\color{#9a00c7}{b} ({\color{#00880A}{8}})({\color{#e65021}{4}})$$ `log_b xy=log_b x+log_b y` $$\log_{b} x$$ `=` $$\log_b 32$$ Since the bases of both sides are the same, the logarithm can be dropped$$\log_{b} \color{#00880A}{x}$$ `=` $$\log_{b} \color{#00880A}{32}$$ $$\color{#00880A}{x}$$ `=` $$\color{#00880A}{32}$$ `x=32`
Quizzes
- Convert Between Logarithmic and Exponent Form 1
- Convert Between Logarithmic and Exponent Form 2
- Evaluate Logarithms 1
- Evaluate Logarithms 2
- Evaluate Logarithms 3
- Expand Log Expressions
- Simplify Log Expressions 1
- Simplify Log Expressions 2
- Simplify Log Expressions 3
- Logarithmic Equations 1
- Logarithmic Equations 2
- Logarithmic Equations 3
- Change Of Base Formula
- Solving Exponential Equations Using Log Laws