Topics
>
Precalculus>
Matrices>
Matrices: Multiplication Word Problems>
Matrices: Multiplication Word ProblemsMatrices: Multiplication Word Problems
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 3 questions completed
Questions:
- 1
- 2
- 3
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- Answered
- Review
-
Question 1 of 3
1. Question
A stationery shop sells the items below. Find the total cost of these items:Round your answer to two decimal places- `$` (22.10, 22.1)
Hint
Help VideoCorrect
Fantastic!
Incorrect
Multiplying Two Matrices
`[[a,b,c]]xx[[p],[q],[r]]=ap+bq+cr`Two matrices can be multiplied only if the number of columns (`n`) in the first matrix is equal to the number of rows
(`m`) in the second matrix.To get the total cost, form the Quantity and Cost matrices, then multiply them.List each item’s quantity in `1` rowPens: `6`Erasers: `2`Gluesticks: `4`Pencils: `5`Quantity Matrix:`[[6,2,4,5]]`List each item’s cost in `1` columnPen: `$``1.60`Eraser: `$``0.80`Gluestick: `$``1.35`Pencil: `$``1.10`Cost Matrix:\begin{bmatrix}
\color{#9a00c7}{1.60} \\
\color{#9a00c7}{0.80} \\
\color{#9a00c7}{1.35} \\
\color{#9a00c7}{1.10}
\end{bmatrix}Next, proceed with multiplying the two matrices`[[6,2,4,5]]times``[[1.60],[0.80],[1.35],[1.10]]` `=` \begin{bmatrix}
(6\cdot\color{#9a00c7}{1.60})+(2\cdot\color{#9a00c7}{0.80})+(4\cdot\color{#9a00c7}{1.35})+(5\cdot\color{#9a00c7}{1.10})
\end{bmatrix}`=` `[9.60+1.60+5.40+5.50]` `=` `[22.10]` Therefore, the total cost of the items is `$22.10``$22.10` -
Question 2 of 3
2. Question
Bakeries A and B buy sacks of flours, boxes of yeast and cans of baking powder from the same vendor on a weekly basis. The quantities and costs are listed below. Find the total weekly cost for each bakery in matrix format.Hint
Help VideoCorrect
Keep Going!
Incorrect
Multiplying Two Matrices
`[[a,b,c]]xx[[p],[q],[r]]=ap+bq+cr`Two matrices can be multiplied only if the number of columns (`n`) in the first matrix is equal to the number of rows
(`m`) in the second matrix.To get the total cost, form the Quantity and Cost matrices, then multiply them.List each bakery’s item quantity in `2` rowsBakery A: `15` Flour, `2` Yeast, `6` Baking PowderBakery B: `17` Flour, `3` Yeast, `4` Baking PowderQuantity Matrix:\begin{matrix}
\mathsf{A} \\
\mathsf{B}
\end{matrix}\begin{bmatrix}
15 & 2 & 6 \\
17 & 3 & 4
\end{bmatrix}List each item’s cost in `1` columnFlour: `$``12`Yeast: `$``17`Baking Powder: `$``5`Cost Matrix:\begin{bmatrix}
\color{#9a00c7}{12} \\
\color{#9a00c7}{17} \\
\color{#9a00c7}{5}
\end{bmatrix}Next, proceed with multiplying the two matrices\begin{matrix}
\mathsf{A} \\
\mathsf{B}
\end{matrix}\begin{bmatrix}
15 & 2 & 6 \\
17 & 3 & 4
\end{bmatrix}$$\times$$\begin{bmatrix}
\color{#9a00c7}{12} \\
\color{#9a00c7}{17} \\
\color{#9a00c7}{5}
\end{bmatrix}`=` \begin{matrix}
\mathsf{A} \\
\mathsf{B}
\end{matrix}\begin{bmatrix}
(15\cdot\color{#9a00c7}{12})+(2\cdot\color{#9a00c7}{17})+(6\cdot\color{#9a00c7}{5}) \\
(17\cdot\color{#9a00c7}{12})+(3\cdot\color{#9a00c7}{17})+(4\cdot\color{#9a00c7}{5})
\end{bmatrix}`=` \begin{matrix}
\mathsf{A} \\
\mathsf{B}
\end{matrix}\begin{bmatrix}
180+34+30 \\
204+51+20
\end{bmatrix}`=` \begin{matrix}
\mathsf{A} \\
\mathsf{B}
\end{matrix}\begin{bmatrix}
244 \\
275
\end{bmatrix}Therefore, the total cost of the items for Bakery A is `$244` and for Bakery B, it is `$275`\begin{matrix}
\mathsf{A} \\
\mathsf{B}
\end{matrix}\begin{bmatrix}
244 \\
275
\end{bmatrix} -
Question 3 of 3
3. Question
Three tennis players A, B and C submitted an equipment list. Their lists and the cost of each item is below. Find the total equipment cost for each tennis player in matrix format.Hint
Help VideoCorrect
Nice Job!
Incorrect
Multiplying Two Matrices
`[[a,b,c]]xx[[p],[q],[r]]=ap+bq+cr`Two matrices can be multiplied only if the number of columns (`n`) in the first matrix is equal to the number of rows
(`m`) in the second matrix.To get the total cost, form the Quantity and Cost matrices, then multiply them.List each player’s equipment quantity in `3` rowsPlayer A: `7` Racquets, `45` Balls, `5` ShoesPlayer B: `9` Racquets, `50` Balls, `4` ShoesPlayer C: `6` Racquets, `35` Balls, `7` ShoesQuantity Matrix:\begin{matrix}
\mathsf{A} \\
\mathsf{B} \\
\mathsf{C}
\end{matrix}\begin{bmatrix}
7 & 45 & 5 \\
9 & 50 & 4 \\
6 & 35 & 7
\end{bmatrix}List each item’s cost in `1` columnRacquets: `$``149`Balls: `$``2.10`Shoes: `$``138`Cost Matrix:\begin{bmatrix}
\color{#9a00c7}{149} \\
\color{#9a00c7}{2.10} \\
\color{#9a00c7}{138}
\end{bmatrix}Next, proceed with multiplying the two matrices\begin{matrix}
\mathsf{A} \\
\mathsf{B} \\
\mathsf{C}
\end{matrix}\begin{bmatrix}
7 & 45 & 5 \\
9 & 50 & 4 \\
6 & 35 & 7
\end{bmatrix}$$\times$$\begin{bmatrix}
\color{#9a00c7}{149} \\
\color{#9a00c7}{2.10} \\
\color{#9a00c7}{138}
\end{bmatrix}`=` \begin{matrix}
\mathsf{A} \\
\mathsf{B} \\
\mathsf{C}
\end{matrix}\begin{bmatrix}
(7\cdot\color{#9a00c7}{149})+(45\cdot\color{#9a00c7}{2.10})+(5\cdot\color{#9a00c7}{138}) \\
(9\cdot\color{#9a00c7}{149})+(50\cdot\color{#9a00c7}{2.10})+(4\cdot\color{#9a00c7}{138}) \\
(6\cdot\color{#9a00c7}{149})+(35\cdot\color{#9a00c7}{2.10})+(7\cdot\color{#9a00c7}{138})
\end{bmatrix}`=` \begin{matrix}
\mathsf{A} \\
\mathsf{B} \\
\mathsf{C}
\end{matrix}\begin{bmatrix}
1043+94.50+690 \\
1341+105+552 \\
894+73.50+966
\end{bmatrix}`=` \begin{matrix}
\mathsf{A} \\
\mathsf{B} \\
\mathsf{C}
\end{matrix}\begin{bmatrix}
1827.50 \\
1998 \\
1933.50
\end{bmatrix}Therefore, the total equipment cost for Players A, B and C is `$1827.50`, `$1998` and `$1933.50` respectively.\begin{matrix}
\mathsf{A} \\
\mathsf{B} \\
\mathsf{C}
\end{matrix}\begin{bmatrix}
1827.50 \\
1998 \\
1933.50
\end{bmatrix}
Quizzes
- Add & Subtract Matrices 1
- Add & Subtract Matrices 2
- Add & Subtract Matrices 3
- Multiply Matrices 1
- Multiply Matrices 2
- Matrices: Multiplication Word Problems
- Determinant of a Matrix
- Inverse of a Matrix
- Matrices: Systems of Equations 1
- Matrices: Systems of Equations 2
- Gauss Jordan Elimination
- Cramer’s Rule