Simple Probability 3
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 7 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
- 6
- 7
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- Answered
- Review
-
Question 1 of 7
1. Question
Find the probability of spinning the following spinners and getting:`(i)` Pink or Green`(ii)` Yellow or BlueWrite fractions in the format “a/b”-
`(i)` (2/5, 0.4)`(ii)` (3/4, 0.75)
Hint
Help VideoCorrect
Nice Job!
Incorrect
Help VideoProbability Formula
$$\mathsf{P(E)}=\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$Addition Principle
If two or more events are joined by OR, their probabilities should be added.`(i)` Find the probability of the arrow landing on Pink or Green.favourable outcomes`=``2` (`1` Pink `+1` Green)total outcomes`=``5` (Pink, Green, Orange, Blue, Yellow)$$ \mathsf{P(Pink\:or\:Green)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{2}}{\color{#007DDC}{5}}$$ Substitute values `(ii)` Find the probability of the arrow landing on Yellow or Blue.favourable outcomes`=``3` (`2` Yellow `+1` Blue)total outcomes`=``4` (Orange, Blue, and `2` Yellow)$$ \mathsf{P(Yellow\:or\:Blue)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{3}}{\color{#007DDC}{4}}$$ Substitute values `(i) 2/5``(ii) 3/4` -
-
Question 2 of 7
2. Question
A six-sided dice does not have a side with `6` dots but instead has two sides with `1` dot. Find the probability of the rolling the dice and getting:`(d) 6``(e)` greater than `1`Write fractions in the format “a/b”-
`(d)` (0, 0/6)`(e)` (2/3, 4/6, 0.67)
Hint
Help VideoCorrect
Fantastic!
Incorrect
Help VideoProbability Formula
$$\mathsf{P(E)}=\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$Addition Principle
If two or more events are joined by OR, their probabilities should be added.`(d)` Find the probability of rolling the dice and getting `6`.favourable outcomes`=``0` (no sides have `6` dots)total outcomes`=``6` (`1,1,2,3,4,5`)$$ \mathsf{P(}6\mathsf{)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{0}}{\color{#007DDC}{6}}$$ Substitute values `=` $$0$$ `(e)` Find the probability of rolling the dice and getting greater than `1`.favourable outcomes`=``4` (`2,3,4,5`)total outcomes`=``6` (`1,1,2,3,4,5`)$$ \mathsf{P(greater\:than\:}1\mathsf{)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{4}}{\color{#007DDC}{6}}$$ Substitute values `=` $$\frac{2}{3}$$ `(d) 0``(e) 4/6` or `2/3` -
-
Question 3 of 7
3. Question
A normal six-sided dice is rolled. Find the probability of getting:`(d) 3` or `6``(e) “>“3``(f) “<“7`Write fractions in the format “a/b”-
`(d)` (1/3, 2/6, 0.17)`(e)` (1/2, 3/6, 0.5)`(f)` (1, 6/6)
Hint
Help VideoCorrect
Correct!
Incorrect
Help VideoProbability Formula
$$\mathsf{P(E)}=\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$Addition Principle
If two or more events are joined by OR, their probabilities should be added.`(d)` Find the probability of the rolling the dice and getting `3` or `6`.favourable outcomes`=``2` (`3,6`)total outcomes`=``6` (`1,2,3,4,5,6`)$$ \mathsf{P(}3\:\mathsf{or}\:6\mathsf{)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{2}}{\color{#007DDC}{6}}$$ Substitute values `=` $$\frac{1}{3}$$ `(e)` Find the probability of the rolling the dice and getting `>“3`.favourable outcomes`=``3` (`4,5,6`)total outcomes`=``6` (`1,2,3,4,5,6`)$$ \mathsf{P(}>3\mathsf{)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{3}}{\color{#007DDC}{6}}$$ Substitute values `=` $$\frac{1}{2}$$ `(f)` Find the probability of the rolling the dice and getting `<“7`.favourable outcomes`=``6` (`1,2,3,4,5,6`)total outcomes`=``6` (`1,2,3,4,5,6`)$$ \mathsf{P(}<7\mathsf{)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{6}}{\color{#007DDC}{6}}$$ Substitute values `=` $$1$$ `(d) 1/3``(e) 1/2``(f) 1` -
-
Question 4 of 7
4. Question
A jar contains `5` red marbles, `6` yellow marbles and `3` black marbles. Find the probability of drawing a marble at random and getting:`(c)` Black or Red`(d)` BlueWrite fractions in the format “a/b”-
`(c)` (4/7, 8/14, 0.57)`(d)` (0, 0/14)
Hint
Help VideoCorrect
Fantastic!
Incorrect
Help VideoProbability Formula
$$\mathsf{P(E)}=\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$Addition Principle
If two or more events are joined by OR, their probabilities should be added.`(c)` Find the probability of the drawing a marble at random and getting a Black or Red marble.favourable outcomes`=``8` (`3` Black, `5` Red)total outcomes`=``14` (`5` Red, `6` Yellow, `3` Black)$$ \mathsf{P(Black\:or\:Red)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{8}}{\color{#007DDC}{14}}$$ Substitute values `=` $$\frac{4}{7}$$ `(d)` Find the probability of the drawing a marble at random and getting a Blue marble.favourable outcomes`=``0` (there are no Blue marbles)total outcomes`=``14` (`5` Red, `6` Yellow, `3` Black)$$ \mathsf{P(Blue)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{0}}{\color{#007DDC}{14}}$$ Substitute values `=` $$0$$ `(c) 4/7``(d) 0` -
-
Question 5 of 7
5. Question
Find the probability of drawing from a standard deck of cards and getting:`(c)` Picture`(d)` Red or BlackWrite fractions in the format “a/b”-
`(c)` (3/13, 12/52, 0.23)`(d)` (1, 52/52)
Hint
Help VideoCorrect
Correct!
Incorrect
Help VideoProbability Formula
$$\mathsf{P(E)}=\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$Addition Principle
If two or more events are joined by OR, their probabilities should be added.`(c)` Find the probability of drawing from a standard deck of cards and getting a Picture card.favourable outcomes`=3*4=``12` (a standard deck has `3` Picture cards for each of the `4` suits)total outcomes`=``52` (a standard deck has `52` cards)$$ \mathsf{P(Picture)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{12}}{\color{#007DDC}{52}}$$ Substitute values `=` $$\frac{3}{13}$$ `(d)` Find the probability of drawing from a standard deck of cards and getting a Red or Black card.favourable outcomes`=``52` (all cards from a standard deck are either Red or Black)total outcomes`=``52` (a standard deck has `52` cards)$$ \mathsf{P(Red\:or\:Black)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{52}}{\color{#007DDC}{52}}$$ Substitute values `=` $$1$$ `(c) 3/13``(d) 1` -
-
Question 6 of 7
6. Question
Find the probability of drawing from a standard deck of cards and getting:`(c)` Red or a Black `9``(d)` Red `4`Write fractions in the format “a/b”-
`(c)` (7/13, 28/52, 0.52)`(d)` (2/52, 1/26, 0.04)
Hint
Help VideoCorrect
Well Done!
Incorrect
Help VideoProbability Formula
$$\mathsf{P(E)}=\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$Addition Principle
If two or more events are joined by OR, their probabilities should be added.`(c)` Find the probability of drawing from a standard deck of cards and getting a Red or a Black `9` card.favourable outcomes`=26+1+1=``28` (`26` Red, one `9` of Clubs, one `9` of Spades)total outcomes`=``52` (a standard deck has `52` cards)$$ \mathsf{P(Red\:or\:a\:Black\:}9\mathsf{)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{28}}{\color{#007DDC}{52}}$$ Substitute values `=` $$\frac{7}{13}$$ `(d)` Find the probability of drawing from a standard deck of cards and getting a Red `4` card.favourable outcomes`=``2` (one `4` of Hearts, one `4` of Diamonds)total outcomes`=``52` (a standard deck has `52` cards)$$ \mathsf{P(Red\:}4\mathsf{)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{2}}{\color{#007DDC}{52}}$$ Substitute values `=` $$\frac{1}{26}$$ `(c) 28/52` or `7/13``(d) 2/52` or `1/26` -
-
Question 7 of 7
7. Question
Find the probability of drawing from a standard deck of cards and getting:`(c)` Black Jack`(d)` Queen or `3` of DiamondsWrite fractions in the format “a/b”-
`(c)` (2/52, 1/26, 0.04)`(d)` (5/52, [0.10)
Hint
Help VideoCorrect
Exceptional!
Incorrect
Help VideoProbability Formula
$$\mathsf{P(E)}=\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$Addition Principle
If two or more events are joined by OR, their probabilities should be added.`(c)` Find the probability of drawing from a standard deck of cards and getting a Black Jack.favourable outcomes`=``2` (`1` Jack of Spades, `1` Jack of Clubs)total outcomes`=``52` (a standard deck has `52` cards)$$ \mathsf{P(Black\:Jack)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{2}}{\color{#007DDC}{52}}$$ Substitute values `=` $$\frac{1}{26}$$ `(d)` Find the probability of drawing from a standard deck of cards and getting a Queen or a `3` of Diamonds card.favourable outcomes`=(4*1)+1=``5` (each of the `4` suits have `1` Queen card, one `3` of Diamonds)total outcomes`=``52` (a standard deck has `52` cards)$$ \mathsf{P(Queen\:or\:}3\:\mathsf{of\:Diamonds)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{5}}{\color{#007DDC}{52}}$$ Substitute values `(c) 2/52` or `1/26``(d) 5/52` -
Quizzes
- Simple Probability 1
- Simple Probability 2
- Simple Probability 3
- Simple Probability 4
- Complementary Probability 1
- Compound Events 1
- Compound Events 2
- Venn Diagrams (Non Mutually Exclusive)
- Independent Events 1
- Independent Events 2
- Dependent Events (Conditional Probability)
- Probability Tree (Independent)
- Probability Tree (Dependent)