Topics
>
Trigonometry>
Trig Identities>
Simplify Trigonometric Identities>
Simplify Trigonometric IdentitiesSimplify Trigonometric Identities
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 7 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
- 6
- 7
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- Answered
- Review
-
Question 1 of 7
1. Question
Which of the following are trigonometric identities?Hint
Help VideoCorrect
Well Done!
Incorrect
Trigonometric Identities
$$\sec\theta=\frac{1}{\text{cos}\theta}$$$$\csc\theta=\frac{1}{\text{sin}\theta}$$$$\cot\theta=\frac{1}{\text{tan}\theta}$$$$\tan\theta=\frac{\text{sin}\theta}{\text{cos}\theta}$$$$\cot\theta=\frac{\text{cos}\theta}{\text{sin}\theta}$$Using the given image, we can see that the radius of the circle will be `1`. Therefore, the circle follows the formula `x^2+y^2=1`, where `1` is the radius.Make a reference triangle by making a line from the point of origin `(0,0)` going to any point in the circle to represent the radius and connect it to either the x or y-axisNotice that, given angle `theta`, the circle has the vertical line parallel to the y-axis as its opposite side and the line on the x-axis as the adjacent sideNow that we have the opposite and adjacent sides and the radius `1` as the hypotenuse, we can use the trigonometric functions to find their respective values`\text(sin)` `=` `\text(opposite)/(\text(hypotenuse))` `=` `y/1` `=` `y` `\text(cos)` `=` `\text(adjacent)/(\text(hypotenuse))` `=` `x/1` `=` `x` `x` and `y` are both coordinate values, so we can write the coordinates as `(\text(cos) theta,\text(sin) theta)`Finally, use the values of `x` and `y` and derive its trigonometric identities`x^2+y^2` `=` `1` `\text(cos)^2theta+\text(sin)^2theta` `=` `1` Substitute known values `(\text(cos)^2theta+\text(sin)^2theta)``divide \text(cos)^2theta` `=` `1``divide \text(cos)^2theta` Divide both sides by `\text(cos)^2theta` `1+(\text(sin)^2theta)/(\text(cos)^2theta)` `=` `1/(\text(cos)^2theta)` `1+``\text(tan)^2theta` `=` `1/(\text(cos)^2theta)` `(\text(sin)^2theta)/(\text(cos)^2theta)=\text(tan)^2theta` `1+\text(tan)^2theta` `=` `\text(sec)^2theta` `1/(\text(cos)^2theta)=\text(sec)^2theta` `\text(sec)^2theta` `=` `1+\text(tan)^2theta` `x^2+y^2` `=` `1` `\text(cos)^2theta+\text(sin)^2theta` `=` `1` Substitute known values `(\text(cos)^2theta+\text(sin)^2theta)``divide \text(sin)^2theta` `=` `1``divide \text(sin)^2theta` Divide both sides by `\text(sin)^2theta` `(\text(cos)^2theta)/(\text(sin)^2theta)+1` `=` `1/(\text(sin)^2theta)` `\text(cot)^2theta``+1` `=` `1/(\text(sin)^2theta)` `(\text(cos)^2theta)/(\text(sin)^2theta)=\text(cot)^2theta` `\text(cot)^2theta+1` `=` `\text(csc)^2theta` `1/(\text(sin)^2theta)=\text(csc)^2theta` `\text(csc)^2theta` `=` `\text(cot)^2theta+1` `\text(sec)^2theta=1+\text(tan)^2theta``\text(csc)^2theta=\text(cot)^2theta+1` -
Question 2 of 7
2. Question
Simplify`1/(1+sin theta)+1/(1-sin theta)`Hint
Help VideoCorrect
Nice Job!
Incorrect
Trigonometric Identities
$$\sec\theta=\frac{1}{\text{cos}\theta}$$$$\csc\theta=\frac{1}{\text{sin}\theta}$$$$\cot\theta=\frac{1}{\text{tan}\theta}$$$$\tan\theta=\frac{\text{sin}\theta}{\text{cos}\theta}$$$$\cot\theta=\frac{\text{cos}\theta}{\text{sin}\theta}$$Apply the rule of adding fractions and simplify the expression`1/(1+\text(sin) theta)+1/(1-\text(sin) theta)` `=` `(1-\text(sin) theta+1+\text(sin) theta)/((1+\text(sin) theta)(1-\text(sin) theta))` `=` `2/((1+\text(sin) theta)(1-\text(sin) theta))` Combine like terms `=` `2/(1-\text(sin)^2theta)` Expand Recall that `\text(sin)^2theta+\text(cos)^2theta=1`. Derive this formula to further simplify the expression`\text(sin)^2theta+\text(cos)^2theta` `=` `1` `\text(sin)^2theta+\text(cos)^2theta` `-\text(sin)^2theta` `=` `1` `-\text(sin)^2theta` Subtract `\text(sin)^2theta` from both sides `\text(cos)^2theta` `=` `1-\text(sin)^2theta` `2/(1-\text(sin)^2theta)` `=` `2/(\text(cos)^2theta)` `1-\text(sin)^2theta=\text(cos)^2theta` `=` `2/1xx 1/(\text(cos)^2theta)` Take out `2` `=` `2xx\text(sec)^2theta` `1/(\text(cos)^2theta)=\text(sec)^2theta` `=` `2\text(sec)^2theta` `2\text(sec)^2theta` -
Question 3 of 7
3. Question
Simplify`(tan theta)/(sec theta)`Hint
Help VideoCorrect
Excellent!
Incorrect
Trigonometric Identities
$$\sec\theta=\frac{1}{\text{cos}\theta}$$$$\csc\theta=\frac{1}{\text{sin}\theta}$$$$\cot\theta=\frac{1}{\text{tan}\theta}$$$$\tan\theta=\frac{\text{sin}\theta}{\text{cos}\theta}$$$$\cot\theta=\frac{\text{cos}\theta}{\text{sin}\theta}$$Substitute known values to `\text(tan)` and `\text(sec)``\text(tan)` `=` `(\text(sin))/(\text(cos))` `\text(sec)` `=` `1/(\text(cos))` `(\text(tan) theta)/(\text(sec) theta)` `=` `((\text(sin))/(\text(cos)))/(1/(\text(cos)))` Substitute known values `=` `\text(sin) theta` Apply rule of dividing fractions `\text(sin) theta` -
Question 4 of 7
4. Question
Simplify`sec theta-sec theta sin^2theta`Hint
Help VideoCorrect
Fantastic!
Incorrect
Trigonometric Identities
$$\sec\theta=\frac{1}{\text{cos}\theta}$$$$\csc\theta=\frac{1}{\text{sin}\theta}$$$$\cot\theta=\frac{1}{\text{tan}\theta}$$$$\tan\theta=\frac{\text{sin}\theta}{\text{cos}\theta}$$$$\cot\theta=\frac{\text{cos}\theta}{\text{sin}\theta}$$Factor out `\text(sec) theta` on both terms`\text(sec) theta-\text(sec) theta \text(sin)^2theta` `=` `\text(sec) theta(1-\text(sin)^2theta)` Factorise Recall that `\text(sin)^2theta+\text(cos)^2theta=1`. Derive this formula to further simplify the expression`\text(sin)^2theta+\text(cos)^2theta` `=` `1` `\text(sin)^2theta+\text(cos)^2theta` `-\text(sin)^2theta` `=` `1` `-\text(sin)^2theta` Subtract `\text(sin)^2theta` from both sides `\text(cos)^2theta` `=` `1-\text(sin)^2theta` `\text(sec) theta(1-\text(sin)^2theta)` `=` `\text(sec) theta(\text(cos)^2theta)` `1-\text(sin)^2theta=\text(cos)^2theta` `=` `1/(\text(cos) theta)*(\text(cos)^2theta)` `\text(sec) theta=1/(\text(cos) theta)` `=` `(\text(cos)^2theta)/(\text(cos) theta)` `=` `\text(cos) theta` `\text(cos) theta` -
Question 5 of 7
5. Question
Simplify`sec^2A-csc^2A`Hint
Help VideoCorrect
Keep Going!
Incorrect
The difference of two squares is a format of a quadratic expression where there are two terms that are both perfect squares.First, find the square of the two terms.First term`\text(sec)^2A` `=` `\text(sec) A*\text(sec) A` Second term`\text(csc)^2A` `=` `\text(csc) A*\text(csc) A` Finally, get the sum and difference of the two values.`(``\text(sec) A``-``\text(csc) A``)(``\text(sec) A``+``\text(csc) A``)` `(\text(sec) A-\text(csc) A)(\text(sec) A+\text(csc) A)` -
Question 6 of 7
6. Question
Simplify`(tan^2theta)/(sec theta-1)`Hint
Help VideoCorrect
Correct!
Incorrect
Trigonometric Identities
$$\sec\theta=\frac{1}{\text{cos}\theta}$$$$\csc\theta=\frac{1}{\text{sin}\theta}$$$$\cot\theta=\frac{1}{\text{tan}\theta}$$$$\tan\theta=\frac{\text{sin}\theta}{\text{cos}\theta}$$$$\cot\theta=\frac{\text{cos}\theta}{\text{sin}\theta}$$Recall that `1+\text(tan)^2theta=\text(sec)^2theta`. Derive this formula to further simplify the expression`1+\text(tan)^2theta` `=` `\text(sec)^2theta` `1+\text(tan)^2theta` `-1` `=` `\text(sec)^2theta` `-1` Subtract `1` from both sides `\text(tan)^2theta` `=` `\text(sec)^2theta-1` `(\text(tan)^2theta)/(\text(sec) theta-1)` `=` `(\text(sec)^2theta-1)/(\text(sec) theta-1)` `\text(tan)^2theta=\text(sec)^2theta-1` `=` `((\text(sec)theta-1)(\text(sec)theta+1))/(\text(sec) theta-1)` Factorise `=` `\text(sec)theta+1` `(\text(sec) theta-1)/(\text(sec) theta-1)=1` `\text(sec)theta+1` -
Question 7 of 7
7. Question
Simplify`((tan^2beta)(cot^2beta+1))/(tan^2beta+1)`- (1)
Hint
Help VideoCorrect
Great Work!
Incorrect
Trigonometric Identities
$$\sec\theta=\frac{1}{\text{cos}\theta}$$$$\csc\theta=\frac{1}{\text{sin}\theta}$$$$\cot\theta=\frac{1}{\text{tan}\theta}$$$$\tan\theta=\frac{\text{sin}\theta}{\text{cos}\theta}$$$$\cot\theta=\frac{\text{cos}\theta}{\text{sin}\theta}$$Recall that `1+\text(cot)^2theta=\text(csc)^2theta`. Derive this formula to further simplify the expression`((\text(tan)^2beta)(\text(cot)^2beta+1))/(\text(tan)^2beta+1)` `=` `(\text(tan)^2beta*\text(csc)^2theta)/(\text(tan)^2beta+1)` `1+\text(cot)^2theta=\text(csc)^2theta` Finally, substitute known values to `\text(tan)`, `\text(csc)`, and `\text(sec)``\text(tan)` `=` `(\text(sin))/(\text(cos))` `\text(csc)` `=` `1/(\text(sin))` `\text(sec)` `=` `1/(\text(cos))` `(\text(tan)^2beta*\text(csc)^2theta)/(\text(tan)^2beta+1)` `=` `((\text(sin)^2beta)/(\text(cos)^2beta)*1/(\text(csc)^2theta))/(1/(\text(cos)^2theta))` Substitute known values `=` `(\text(sin)^2beta)/(\text(cos)^2beta)*1/(\text(csc)^2theta)*(\text(cos)^2theta)/1` Apply rule of dividing fractions `=` `1` `1`