Topics
>
Trigonometry>
Trigonometric Functions>
Trig Applications of Differentiation>
Trig Applications of DifferentiationTrig Applications of Differentiation
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 3 questions completed
Questions:
- 1
- 2
- 3
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- Answered
- Review
-
Question 1 of 3
1. Question
Given that `x=(pi)/12`, find the slope (`m`) of the normal line`y=sin3x`Hint
Help VideoCorrect
Well Done!
Incorrect
Derivatives of Trigonometric Functions
`y'(\text(sin))=\text(cos)``y'(\text(cos))=-\text(sin)``y'(\text(tan))=\text(sec)^2`First, find the derivative of the equation`y` `=` `\text(sin) 3x` `y’` `=` `\text(cos) 3x*3` Derive `\text(sin) 3x` `=` `3 \text(cos) 3x` Next, substitute the value of `x` and get the slope of the tangent`m` `=` `3 \text(cos) 3x` `=` `3 \text(cos) 3*((pi)/12)` Substitute `x=(pi)/12` `=` `3 \text(cos) (pi)/4` Simplify `=` `3*1/(sqrt2)` `\text(cos) (pi)/4=1/(sqrt2)` `=` `3/(sqrt2)` Finally, to find the normal line, get the negative reciprocal of the tangent, which is `3/(sqrt2)``3/(sqrt2)` `=` `-(sqrt2)/3` Get the negative reciprocal `m=-(sqrt2)/3` -
Question 2 of 3
2. Question
Given that `x=(pi)/2`, find the slope (`m`) of the tangent line`y=tan(x/2)`- `m=` (1)
Hint
Help VideoCorrect
Nice Job!
Incorrect
Derivatives of Trigonometric Functions
`y'(\text(sin))=\text(cos)``y'(\text(cos))=-\text(sin)``y'(\text(tan))=\text(sec)^2`First, find the derivative of the equation`y` `=` `\text(tan) x/2` `y’` `=` `(\text(sec) x/2)^2*1/2` Derive `\text(tan) x/2` `=` `1/2(\text(sec) x/2)^2` Finally, substitute the value of `x` and get the slope of the tangent`m` `=` `1/2(\text(sec) x/2)^2` `=` `1/2(\text(sec) ((pi)/2)/2)^2` Substitute `x=(pi)/1` `=` `1/2(\text(sec) (pi)/4)^2` Simplify `=` `1/2(sqrt2)^2` `\text(sec) (pi)/4=sqrt2` `=` `1/2*2` `=` `1` `m=1` -
Question 3 of 3
3. Question
Find the equation of the tangent to the curve `y=cos2x` at the point `x=pi/4`Hint
Help VideoCorrect
Excellent!
Incorrect
Derivatives of Trigonometric Functions
`y'(\text(sin))=\text(cos)``y'(\text(cos))=-\text(sin)``y'(\text(tan))=\text(sec)^2`Point Gradient Formula
`y-``y_1``=``m``(x-``x_1``)`First, find the derivative of the equation`y` `=` `\text(cos) 2x` `y’` `=` `-\text(sin) 2x^2*2` Derive `\text(cos) 2x` `=` `-2 \text(sin) 2x` Next, substitute the value of `x` to the derived function and get the slope of the tangent`-2 \text(sin) 2x` `=` `-2 \text(sin) 2(pi/4)` Substitute `x=pi/4` `=` `-2 \text(sin) pi/2` Simplify `=` `-2*1` `\text(sin) (pi)/2=1` `=` `-2` Next, substitute the value of `x` to the original expression and get value of `y``y` `=` `\text(cos) 2x` `y` `=` `\text(cos) 2(pi/4)` Substitute `x=pi/4` `=` `\text(cos) pi/2` Simplify `=` `0` `\text(cos) (pi)/2=0` Finally, substitute the known values to the slope-gradient formula to get the equation`x_1` `=` `pi/4` `y_1` `=` `0` `m` `=` `-2` `y-``y_1` `=` `m``(x-``x_1``)` `y-``0` `=` $$\color{#007986}{-2}\left(x-\color{#e65021}{\frac{\pi}{4}}\right)$$ Substitute known values `y` `=` `-2x+pi/2` Simplify `y=-2x+pi/2`
Quizzes
- Derivative of Trigonometric Functions 1
- Derivative of Trigonometric Functions 2
- Derivative of Trigonometric Functions 3
- Trig Applications of Differentiation
- Integral of Trigonometric Functions 1
- Integral of Trigonometric Functions 2
- Trig Applications of Integration
- Graph Trigonometric Functions 1
- Graph Trigonometric Functions 2
- Graph Trigonometric Functions 3
- Graph Trigonometric Functions 4