Topics
>
Geometry>
Trigonometry>
Trig Ratios: Solving for an Angle>
Trig Ratios: Solving for an AngleTrig Ratios: Solving for an Angle
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 7 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
- 6
- 7
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- Answered
- Review
-
Question 1 of 7
1. Question
Find `theta`.Round your answer to the nearest minute- `theta=` (67)`°` (36)`'`
Hint
Help VideoCorrect
Awesome!
Incorrect
Trigonometric Ratios (SOHCAHTOA)
Sin Ratio (SOH)
$$\sin=\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$Cos Ratio (CAH)
$$\cos=\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$Tan Ratio (TOA)
$$\tan=\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$Calculator Buttons to Use
Shift or 2nd F or INV `=` Inverse function`sin` `=` Sine function`cos` `=` Cosine function`tan` `=` Tangent functionDMS or `° ‘ ‘ ‘` `=` Degree/Minute/Second`=` `=` Equal functionFirst, label the triangle in reference to `theta`.$$\color{#00880a}{\text{adjacent}}=\color{#00880a}{8}$$$$\color{#e85e00}{\text{hypotenuse}}=\color{#e85e00}{21}$$Since we now have the adjacent value and the hypotenuse, we can use the `cos` ratio to find `theta`.`cos theta` `=` $$\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$ `cos theta` `=` $$\frac{\color{#00880a}{8}}{\color{#e85e00}{21}}$$ `theta` `=` `cos^-1(8/21)` Get the inverse of `cos` Now, follow these steps to evaluate `cos^-1(8/21)` using your calculator.`1.` Press Shift or 2nd F (depending on your calculator)`2.` Press `cos``3.` Press `8``3.` Press `÷``3.` Press `21``4.` Press `=`This will give a result of `67.6075°`.To round off the result to the nearest minute, press the DMS button and check the seconds value.`67.6075°=67°36’``26”`Since `26”` is less than `30”`, we can round the minute down to `67°36’`.`theta=67°36’` -
Question 2 of 7
2. Question
Find `theta`.Round your answer to the nearest minute- `theta=` (75)`°` (15)`'`
Hint
Help VideoCorrect
Nice Work!
Incorrect
Trigonometric Ratios (SOHCAHTOA)
Sin Ratio (SOH)
$$\sin=\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$Cos Ratio (CAH)
$$\cos=\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$Tan Ratio (TOA)
$$\tan=\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$Calculator Buttons to Use
Shift or 2nd F or INV `=` Inverse function`sin` `=` Sine function`cos` `=` Cosine function`tan` `=` Tangent functionDMS or `° ‘ ‘ ‘` `=` Degree/Minute/Second`=` `=` Equal functionFirst, label the triangle in reference to `theta`.$$\color{#004ec4}{\text{opposite}}=\color{#004ec4}{19}$$$$\color{#00880a}{\text{adjacent}}=\color{#00880a}{5}$$Since we now have the opposite value and the adjacent, we can use the `tan` ratio to find `theta`.`tan theta` `=` $$\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$ `tan theta` `=` $$\frac{\color{#004ec4}{19}}{\color{#00880a}{5}}$$ `theta` `=` `tan^-1(19/5)` Get the inverse of `tan` Now, follow these steps to evaluate `tan^-1(19/5)` using your calculator.`1.` Press Shift or 2nd F (depending on your calculator)`2.` Press `tan``3.` Press `19``3.` Press `÷``3.` Press `5``4.` Press `=`This will give a result of `75.2564°`.To round off the result to the nearest minute, press the DMS button and check the seconds value.`75.2564°=75°15’``23”`Since `23”` is less than `30”`, we can round the minute down to `75°15’`.`theta=75°15’` -
Question 3 of 7
3. Question
Find `theta`.Round your answer to the nearest minute- `theta=` (57)`°` (48)`'`
Hint
Help VideoCorrect
Fantastic!
Incorrect
Trigonometric Ratios (SOHCAHTOA)
Sin Ratio (SOH)
$$\sin=\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$Cos Ratio (CAH)
$$\cos=\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$Tan Ratio (TOA)
$$\tan=\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$Calculator Buttons to Use
Shift or 2nd F or INV `=` Inverse function`sin` `=` Sine function`cos` `=` Cosine function`tan` `=` Tangent functionDMS or `° ‘ ‘ ‘` `=` Degree/Minute/Second`=` `=` Equal functionFirst, label the triangle in reference to `theta`.$$\color{#004ec4}{\text{opposite}}=\color{#004ec4}{22}$$$$\color{#e85e00}{\text{hypotenuse}}=\color{#e85e00}{26}$$Since we now have the opposite value and the hypotenuse, we can use the `sin` ratio to find `theta`.`sin theta` `=` $$\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$ `sin theta` `=` $$\frac{\color{#004ec4}{22}}{\color{#e85e00}{26}}$$ `theta` `=` `sin^-1(22/26)` Get the inverse of `sin` Now, follow these steps to evaluate `sin^-1(22/26)` using your calculator.`1.` Press Shift or 2nd F (depending on your calculator)`2.` Press `sin``3.` Press `22``3.` Press `÷``3.` Press `26``4.` Press `=`This will give a result of `57.795°`.To round off the result to the nearest minute, press the DMS button and check the seconds value.`57.795°=57°47’``43”`Since `43”` is more than `30”`, we can round the minute up to `57°48’`.`theta=57°48’` -
Question 4 of 7
4. Question
Find `theta`.Round your answer to the nearest minute- `theta=` (22)`°` (27)`'`
Hint
Help VideoCorrect
Good Job!
Incorrect
Trigonometric Ratios (SOHCAHTOA)
Sin Ratio (SOH)
$$\sin=\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$Cos Ratio (CAH)
$$\cos=\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$Tan Ratio (TOA)
$$\tan=\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$Calculator Buttons to Use
Shift or 2nd F or INV `=` Inverse function`sin` `=` Sine function`cos` `=` Cosine function`tan` `=` Tangent functionDMS or `° ‘ ‘ ‘` `=` Degree/Minute/Second`=` `=` Equal functionFirst, label the triangle in reference to `theta`.$$\color{#004ec4}{\text{opposite}}=\color{#004ec4}{38}$$$$\color{#00880a}{\text{adjacent}}=\color{#00880a}{92}$$Since we now have the opposite value and the adjacent, we can use the `tan` ratio to find `theta`.`tan theta` `=` $$\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$ `tan theta` `=` $$\frac{\color{#004ec4}{38}}{\color{#00880a}{92}}$$ `theta` `=` `tan^-1(38/92)` Get the inverse of `tan` Now, follow these steps to evaluate `tan^-1(38/92)` using your calculator.`1.` Press Shift or 2nd F (depending on your calculator)`2.` Press `tan``3.` Press `38``3.` Press `÷``3.` Press `92``4.` Press `=`This will give a result of `22.49258°`.To round off the result to the nearest minute, press the DMS button and check the seconds value.`22.49258°=22°26’``33”`Since `33”` is more than `30”`, we can round the minute up to `22°27’`.`theta=22°27’` -
Question 5 of 7
5. Question
Find `theta`.Round your answer to the nearest minute- `theta=` (28)`°` (15)`'`
Hint
Help VideoCorrect
Fantastic!
Incorrect
Trigonometric Ratios (SOHCAHTOA)
Sin Ratio (SOH)
$$\sin=\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$Cos Ratio (CAH)
$$\cos=\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$Tan Ratio (TOA)
$$\tan=\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$Calculator Buttons to Use
Shift or 2nd F or INV `=` Inverse function`sin` `=` Sine function`cos` `=` Cosine function`tan` `=` Tangent functionDMS or `° ‘ ‘ ‘` `=` Degree/Minute/Second`=` `=` Equal functionFirst, label the triangle in reference to `theta`.$$\color{#00880a}{\text{adjacent}}=\color{#00880a}{37}$$$$\color{#e85e00}{\text{hypotenuse}}=\color{#e85e00}{42}$$Since we now have the adjacent value and the hypotenuse, we can use the `cos` ratio to find `theta`.`cos theta` `=` $$\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$ `cos theta` `=` $$\frac{\color{#00880a}{37}}{\color{#e85e00}{42}}$$ `theta` `=` `cos^-1(37/42)` Get the inverse of `cos` Now, follow these steps to evaluate `cos^-1(37/42)` using your calculator.`1.` Press Shift or 2nd F (depending on your calculator)`2.` Press `cos``3.` Press `37``3.` Press `÷``3.` Press `42``4.` Press `=`This will give a result of `28.242537°`.To round off the result to the nearest minute, press the DMS button and check the seconds value.`28.242537°=28°14’``33”`Since `33”` is more than `30”`, we can round the minute up to `28°15’`.`theta=28°15’` -
Question 6 of 7
6. Question
Find `alpha`.Round your answer to the nearest minute- `alpha=` (53)`°` (2)`'`
Hint
Help VideoCorrect
Perfect!
Incorrect
Trigonometric Ratios (SOHCAHTOA)
Sin Ratio (SOH)
$$\sin=\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$Cos Ratio (CAH)
$$\cos=\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$Tan Ratio (TOA)
$$\tan=\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$Calculator Buttons to Use
Shift or 2nd F or INV `=` Inverse function`sin` `=` Sine function`cos` `=` Cosine function`tan` `=` Tangent functionDMS or `° ‘ ‘ ‘` `=` Degree/Minute/Second`=` `=` Equal functionFirst, label the triangle in reference to `alpha`.$$\color{#004ec4}{\text{opposite}}=\color{#004ec4}{15.1}$$$$\color{#e85e00}{\text{hypotenuse}}=\color{#e85e00}{18.9}$$Since we now have the opposite value and the hypotenuse, we can use the `sin` ratio to find `alpha`.`sin alpha` `=` $$\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$ `sin alpha` `=` $$\frac{\color{#004ec4}{15.1}}{\color{#e85e00}{18.9}}$$ `alpha` `=` `sin^-1(15.1/18.9)` Get the inverse of `sin` Now, follow these steps to evaluate `sin^-1(15.1/18.9)` using your calculator.`1.` Press Shift or 2nd F (depending on your calculator)`2.` Press `sin``3.` Press `15.1``3.` Press `÷``3.` Press `18.9``4.` Press `=`This will give a result of `53.02917°`.To round off the result to the nearest minute, press the DMS button and check the seconds value.`53.02917°=53°1’``45”`Since `45”` is more than `30”`, we can round the minute up to `53°2’`.`alpha=53°2’` -
Question 7 of 7
7. Question
A boat is about to be launched down a `21`-meter ramp with a vertical drop-off of `7`m. At what angle (`theta`) is the ramp inclined with the vertical drop-off?Round your answer to the nearest minute- `theta=` (70)`°` (32)`'`
Hint
Help VideoCorrect
Exceptional!
Incorrect
Trigonometric Ratios (SOHCAHTOA)
Sin Ratio (SOH)
$$\sin=\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$Cos Ratio (CAH)
$$\cos=\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$Tan Ratio (TOA)
$$\tan=\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$Calculator Buttons to Use
Shift or 2nd F or INV `=` Inverse function`sin` `=` Sine function`cos` `=` Cosine function`tan` `=` Tangent functionDMS or `° ‘ ‘ ‘` `=` Degree/Minute/Second`=` `=` Equal functionFirst, label the triangle diagram in reference to `theta`.$$\color{#00880a}{\text{adjacent}}=\color{#00880a}{7}$$$$\color{#e85e00}{\text{hypotenuse}}=\color{#e85e00}{21}$$Since we now have the adjacent value and the hypotenuse, we can use the `cos` ratio to find `theta`.`cos theta` `=` $$\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$ `cos theta` `=` $$\frac{\color{#00880a}{7}}{\color{#e85e00}{21}}$$ `theta` `=` `cos^-1(7/21)` Get the inverse of `cos` Now, follow these steps to evaluate `cos^-1(7/21)` using your calculator.`1.` Press Shift or 2nd F (depending on your calculator)`2.` Press `cos``3.` Press `7``3.` Press `÷``3.` Press `21``4.` Press `=`This will give a result of `70.528779°`.To round off the result to the nearest minute, press the DMS button and check the seconds value.`70.528779°=70°31’``43”`Since `43”` is more than `30”`, we can round the minute up to `70°32’`.The ramp is inclined `70°32’` to the vertical drop-off.`theta=70°32’`
Quizzes
- Intro to Trigonometric Ratios (SOH CAH TOA) 1
- Intro to Trigonometric Ratios (SOH CAH TOA) 2
- Round Angles (Degrees, Minutes, Seconds)
- Evaluate Trig Expressions using a Calculator 1
- Evaluate Trig Expressions using a Calculator 2
- Trig Ratios: Solving for a Side 1
- Trig Ratios: Solving for a Side 2
- Trig Ratios: Solving for an Angle
- Angles of Elevation and Depression
- Trig Ratios Word Problems: Solving for a Side
- Trig Ratios Word Problems: Solving for an Angle
- Area of Non-Right Angled Triangles 1
- Area of Non-Right Angled Triangles 2
- Law of Sines: Solving for a Side
- Law of Sines: Solving for an Angle
- Law of Cosines: Solving for a Side
- Law of Cosines: Solving for an Angle
- Trigonometry Word Problems 1
- Trigonometry Word Problems 2
- Trigonometry Mixed Review: Part 1 (1)
- Trigonometry Mixed Review: Part 1 (2)
- Trigonometry Mixed Review: Part 1 (3)
- Trigonometry Mixed Review: Part 1 (4)
- Trigonometry Mixed Review: Part 2 (1)
- Trigonometry Mixed Review: Part 2 (2)
- Trigonometry Mixed Review: Part 2 (3)