Topics
>
Trigonometry>
Trigonometry Foundations>
Trig Ratios Word Problems: Solving for a Side>
Trig Ratios Word Problems: Solving for a SideTrig Ratios Word Problems: Solving for a Side
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 7 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
- 6
- 7
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- Answered
- Review
-
Question 1 of 7
1. Question
A ship is anchored `410 m` from the base of a vertical cliff. The angle looking up to the top of the cliff is at an angle of `59°24’`. Calculate the height of the cliff (`h`) to the nearest metre.- `h=` (693)`m`
Hint
Help VideoCorrect
Excellent!
Incorrect
Trigonometric Ratios (SOHCAHTOA)
Sin Ratio (SOH)
$$\sin=\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$Cos Ratio (CAH)
$$\cos=\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$Tan Ratio (TOA)
$$\tan=\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$Calculator Buttons to Use
`sin` `=` Sine function`cos` `=` Cosine function`tan` `=` Tangent functionDMS or `° ‘ ‘ ‘` `=` Degree/Minute/Second`=` `=` Equal functionNotice that the scenario creates a triangle. Label it in reference to the given angle.$$\color{#004ec4}{\text{opposite}}=\color{#004ec4}{h}$$$$\color{#00880a}{\text{adjacent}}=\color{#00880a}{410}$$Since we now have the opposite and adjacent values, we can use the `tan` ratio to find `h`.`tan59°24’` `=` $$\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$ `tan59°24’` `=` $$\frac{\color{#004ec4}{h}}{\color{#00880a}{410}}$$ `410xx``tan59°24’` `=` `h/410``xx410` Multiply both sides by `410` `410tan59°24’` `=` `h` `h` `=` `410tan59°24’` Simplify this further by evaluating `tan59°24’` using the calculator:`1.` Press `tan``2.` Press `59` and DMS or `° ‘ ‘ ‘``3.` Press `24` and DMS or `° ‘ ‘ ‘` again`4.` Press `=`The result will be: `1.690908`Continue solving for `h`.`tan59°24’=1.690908``h` `=` `410tan59°24’` `=` `410times1.690908` `=` `693.27` `=` `693 m` Rounded off to the nearest metre `693 m` -
Question 2 of 7
2. Question
A wire of length `5.2 m` is attached to the top of a flagpole. It is inclined to the ground at an angle of `68°32’`. Find the height of the flagpole (`h`) rounded off to `1` decimal place.- `h=` (4.8)`m`
Hint
Help VideoCorrect
Good Job!
Incorrect
Trigonometric Ratios (SOHCAHTOA)
Sin Ratio (SOH)
$$\sin=\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$Cos Ratio (CAH)
$$\cos=\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$Tan Ratio (TOA)
$$\tan=\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$Calculator Buttons to Use
`sin` `=` Sine function`cos` `=` Cosine function`tan` `=` Tangent functionDMS or `° ‘ ‘ ‘` `=` Degree/Minute/Second`=` `=` Equal functionNotice that the scenario creates a triangle. Label it in reference to the given angle.$$\color{#004ec4}{\text{opposite}}=\color{#004ec4}{h}$$$$\color{#e85e00}{\text{hypotenuse}}=\color{#e85e00}{5.2}$$Since we now have the opposite and hypotenuse values, we can use the `sin` ratio to find `h`.`sin68°32’` `=` $$\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$ `sin68°32’` `=` $$\frac{\color{#004ec4}{h}}{\color{#e85e00}{5.2}}$$ `5.2xx``sin68°32’` `=` `h/5.2``xx5.2` Multiply both sides by `5.2` `5.2sin68°32’` `=` `h` `h` `=` `5.2sin68°32’` Simplify this further by evaluating `sin68°32’` using the calculator:`1.` Press `sin``2.` Press `68` and DMS or `° ‘ ‘ ‘``3.` Press `32` and DMS or `° ‘ ‘ ‘` again`4.` Press `=`The result will be: `0.9306306`Continue solving for `h`.`sin68°32’=0.9306306``h` `=` `5.2sin68°32’` `=` `5.2times0.9306306` `=` `4.839` `=` `4.8 m` Rounded off to `1` decimal place `4.8 m` -
Question 3 of 7
3. Question
A `9.7 m` ladder leans against a wall and makes an angle of `61°9’` with the ground. How far is the foot of the ladder from the base of the wall (`x`)? (`1` decimal place).- `x=` (4.7)`m`
Hint
Help VideoCorrect
Correct!
Incorrect
Trigonometric Ratios (SOHCAHTOA)
Sin Ratio (SOH)
$$\sin=\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$Cos Ratio (CAH)
$$\cos=\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$Tan Ratio (TOA)
$$\tan=\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$Calculator Buttons to Use
`sin` `=` Sine function`cos` `=` Cosine function`tan` `=` Tangent functionDMS or `° ‘ ‘ ‘` `=` Degree/Minute/Second`=` `=` Equal functionNotice that the scenario creates a triangle. Label it in reference to the given angle.$$\color{#00880a}{\text{adjacent}}=\color{#00880a}{x}$$$$\color{#e85e00}{\text{hypotenuse}}=\color{#e85e00}{9.7}$$Since we now have the adjacent and hypotenuse values, we can use the `cos` ratio to find `x`.`cos61°9’` `=` $$\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$ `cos61°9’` `=` $$\frac{\color{#00880a}{x}}{\color{#e85e00}{9.7}}$$ `9.7xx``cos61°9’` `=` `x/9.7``xx9.7` Multiply both sides by `9.7` `9.7cos61°9’` `=` `x` `x` `=` `9.7cos61°9’` Simplify this further by evaluating `cos61°9’` using the calculator:`1.` Press `cos``2.` Press `61` and DMS or `° ‘ ‘ ‘``3.` Press `9` and DMS or `° ‘ ‘ ‘` again`4.` Press `=`The result will be: `0.482518`Continue solving for `x`.`cos61°9’=0.482518``x` `=` `9.7cos61°9’` `=` `9.7times0.482518` `=` `4.68` `=` `4.7 m` Rounded off to `1` decimal place `4.7 m` -
Question 4 of 7
4. Question
A building casts a shadow `40 m` long on the ground when the sun has an altitude (elevation) from the ground of `59°52’`. Calculate the height of the building (`h`) to the nearest metre.- `h=` (69)`m`
Hint
Help VideoCorrect
Fantastic!
Incorrect
Trigonometric Ratios (SOHCAHTOA)
Sin Ratio (SOH)
$$\sin=\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$Cos Ratio (CAH)
$$\cos=\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$Tan Ratio (TOA)
$$\tan=\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$Calculator Buttons to Use
`sin` `=` Sine function`cos` `=` Cosine function`tan` `=` Tangent functionDMS or `° ‘ ‘ ‘` `=` Degree/Minute/Second`=` `=` Equal functionNotice that the scenario creates a triangle. Label it in reference to the given angle.$$\color{#004ec4}{\text{opposite}}=\color{#004ec4}{h}$$$$\color{#00880a}{\text{adjacent}}=\color{#00880a}{40}$$Since we now have the opposite and adjacent values, we can use the `tan` ratio to find `h`.`tan59°52’` `=` $$\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$ `tan59°52’` `=` $$\frac{\color{#004ec4}{h}}{\color{#00880a}{40}}$$ `40xx``tan59°52’` `=` `h/40``xx40` Multiply both sides by `40` `40tan59°52’` `=` `h` `h` `=` `40tan59°52’` Simplify this further by evaluating `tan59°52’` using the calculator:`1.` Press `tan``2.` Press `59` and DMS or `° ‘ ‘ ‘``3.` Press `52` and DMS or `° ‘ ‘ ‘` again`4.` Press `=`The result will be: `1.7227797`Continue solving for `h`.`tan59°52’=1.7227797``h` `=` `40tan59°52’` `=` `40times1.7227797` `=` `68.911` `=` `69 m` Rounded off to the nearest metre `69 m` -
Question 5 of 7
5. Question
Jacob is flying a kite. He is holding the string `1.5 m` above ground. The string is `32 m` long and makes an angle of `58°19’`. How high is the kite above ground `(h_t) ?` (`1` decimal place)- `h_t =` (18.3)`m`
Hint
Help VideoCorrect
Well Done!
Incorrect
Trigonometric Ratios (SOHCAHTOA)
Sin Ratio (SOH)
$$\sin=\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$Cos Ratio (CAH)
$$\cos=\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$Tan Ratio (TOA)
$$\tan=\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$Calculator Buttons to Use
`sin` `=` Sine function`cos` `=` Cosine function`tan` `=` Tangent functionDMS or `° ‘ ‘ ‘` `=` Degree/Minute/Second`=` `=` Equal functionNotice that the scenario creates a triangle. Label it in reference to the given angle.Let `h` be the height of the kite from where Jacob is holding the string.$$\color{#00880a}{\text{adjacent}}=\color{#00880a}{h}$$$$\color{#e85e00}{\text{hypotenuse}}=\color{#e85e00}{32}$$Since we now have the adjacent and hypotenuse values, we can use the `cos` ratio to find `h`.`cos58°19’` `=` $$\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$ `cos58°19’` `=` $$\frac{\color{#00880a}{h}}{\color{#e85e00}{32}}$$ `32xx``cos58°19’` `=` `h/32``xx32` Multiply both sides by `32` `32cos58°19’` `=` `h` `h` `=` `32cos58°19’` Simplify this further by evaluating `cos58°19’` using the calculator:`1.` Press `cos``2.` Press `58` and DMS or `° ‘ ‘ ‘``3.` Press `19` and DMS or `° ‘ ‘ ‘` again`4.` Press `=`The result will be: `0.525224`Continue solving for `h`.`cos58°19’=0.525224``h` `=` `32cos58°19’` `=` `32times0.525224` `=` `16.80717` Finally, solve for `h_t` or the total height of the kite above ground by adding `1.5` to `h`.`h_t` `=` `h+1.5` `=` `16.80717+1.5` Substitute `h` `=` `18.30717` `=` `18.3 m` Rounded off to `1` decimal place `18.3 m` -
Question 6 of 7
6. Question
Find the height, `h cm`, of the trapezium. (`1` decimal place)- `h=` (3.3)`cm`
Hint
Help VideoCorrect
Great Work!
Incorrect
Trigonometric Ratios (SOHCAHTOA)
Sin Ratio (SOH)
$$\sin=\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$Cos Ratio (CAH)
$$\cos=\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$Tan Ratio (TOA)
$$\tan=\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$Calculator Buttons to Use
`sin` `=` Sine function`cos` `=` Cosine function`tan` `=` Tangent functionDMS or `° ‘ ‘ ‘` `=` Degree/Minute/Second`=` `=` Equal functionFirst, form a triangle using the trapezium.Identify the parts of the triangle using the given values.Reference angle:Notice that from the given obtuse angle, a right angle was formed as the triangle was drawn.Subtract the right angle from the obtuse angle to find the reference angle of the triangle.`151°7′-90°=61°7’`Opposite Side:Subtract the two bases of the trapezium to find the opposite side to the reference angle in the triangle.`18 cm-12 cm=6 cm`Adjacent Side:The side `h` of the trapezium is equal to the adjacent side to the reference angle of the triangle.Since we now have the opposite and adjacent values, we can use the `tan` ratio to find `h`.$$\color{#004ec4}{\text{opposite}}=\color{#004ec4}{6}$$$$\color{#00880a}{\text{adjacent}}=\color{#00880a}{h}$$`tan61°7’` `=` $$\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$ `tan61°7’` `=` $$\frac{\color{#004ec4}{6}}{\color{#00880a}{h}}$$ `h` `=` `6/(tan61°7′)` Swap the value on the left side and the denominator from the right side Simplify this further by evaluating `tan61°7’` using the calculator:`1.` Press `tan``2.` Press `61` and DMS or `° ‘ ‘ ‘``3.` Press `7` and DMS or `° ‘ ‘ ‘` again`4.` Press `=`The result will be: `1.812743`Continue solving for `h`.`tan61°7’=1.812743``h` `=` `6/(tan61°7′)` `=` `6/1.812743` `=` `3.3099` `=` `3.3 cm` Rounded off to `1` decimal place `3.3 cm` -
Question 7 of 7
7. Question
A wedge-shaped ramp is set up for a car stunt on a movie set. The ramp has an angle of inclination of `19°48’` and a vertical rise of `2.6 m`. Find the length of the ramp (`x`) to the nearest metre.- `x=` (8)`m`
Hint
Help VideoCorrect
Excellent!
Incorrect
Trigonometric Ratios (SOHCAHTOA)
Sin Ratio (SOH)
$$\sin=\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$Cos Ratio (CAH)
$$\cos=\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$Tan Ratio (TOA)
$$\tan=\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$Calculator Buttons to Use
`sin` `=` Sine function`cos` `=` Cosine function`tan` `=` Tangent functionDMS or `° ‘ ‘ ‘` `=` Degree/Minute/Second`=` `=` Equal functionNotice that the scenario creates a triangle. Label it in reference to the given angle.$$\color{#004ec4}{\text{opposite}}=\color{#004ec4}{2.6}$$$$\color{#e85e00}{\text{hypotenuse}}=\color{#e85e00}{x}$$Since we now have the opposite and hypotenuse values, we can use the `sin` ratio to find `x`.`sin19°48’` `=` $$\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$ `sin19°48’` `=` $$\frac{\color{#004ec4}{2.6}}{\color{#e85e00}{x}}$$ `x` `=` `2.6/(sin19°48′)` Swap the value on the left side and the denominator from the right side Simplify this further by evaluating `sin19°48’` using the calculator:`1.` Press `sin``2.` Press `19` and DMS or `° ‘ ‘ ‘``3.` Press `48` and DMS or `° ‘ ‘ ‘` again`4.` Press `=`The result will be: `0.338738`Continue solving for `x`.`sin19°48’=0.338738``x` `=` `2.6/(sin19°48′)` `=` `2.6/0.338738` `=` `7.67` `=` `8 m` Rounded off to the nearest metre `8 m`
Quizzes
- Intro to Trigonometric Ratios (SOH CAH TOA) 1
- Intro to Trigonometric Ratios (SOH CAH TOA) 2
- Round Angles (Degrees, Minutes, Seconds)
- Evaluate Trig Expressions using a Calculator 1
- Evaluate Trig Expressions using a Calculator 2
- Trig Ratios: Solving for a Side 1
- Trig Ratios: Solving for a Side 2
- Trig Ratios: Solving for an Angle
- Angles of Elevation and Depression
- Trig Ratios Word Problems: Solving for a Side
- Trig Ratios Word Problems: Solving for an Angle
- Area of Non-Right Angled Triangles 1
- Area of Non-Right Angled Triangles 2
- Law of Sines: Solving for a Side
- Law of Sines: Solving for an Angle
- Law of Cosines: Solving for a Side
- Law of Cosines: Solving for an Angle
- Trigonometry Word Problems 1
- Trigonometry Word Problems 2
- Trigonometry Mixed Review: Part 1 (1)
- Trigonometry Mixed Review: Part 1 (2)
- Trigonometry Mixed Review: Part 1 (3)
- Trigonometry Mixed Review: Part 1 (4)
- Trigonometry Mixed Review: Part 2 (1)
- Trigonometry Mixed Review: Part 2 (2)
- Trigonometry Mixed Review: Part 2 (3)