Topics
>
Trigonometry>
Trigonometry Foundations>
Trig Ratios Word Problems: Solving for an Angle>
Trig Ratios Word Problems: Solving for an AngleTrig Ratios Word Problems: Solving for an Angle
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 6 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
- 6
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- 6
- Answered
- Review
-
Question 1 of 6
1. Question
A `7m` long ladder is placed against the wall. The ladder is `5m` up the wall. What is the angle, `theta`, between the ground and the ladder to the nearest minute?- `theta=` (45)`°` (35)`'`
Hint
Help VideoCorrect
Good Job!
Incorrect
Trigonometric Ratios (SOHCAHTOA)
Sin Ratio (SOH)
$$\sin=\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$Cos Ratio (CAH)
$$\cos=\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$Tan Ratio (TOA)
$$\tan=\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$Calculator Buttons to Use
`sin` `=` Sine function`cos` `=` Cosine function`tan` `=` Tangent functionDMS or `° ‘ ‘ ‘` `=` Degree/Minute/SecondShift or 2nd F or INV `=` Inverse function`=` `=` Equal functionNotice that the scenario creates a triangle. Label it in reference to the missing angle.$$\color{#004ec4}{\text{opposite}}=\color{#004ec4}{5}$$$$\color{#e85e00}{\text{hypotenuse}}=\color{#e85e00}{7}$$Since we now have the opposite and hypotenuse values, we can use the `sin` ratio to find `theta`.`sin theta` `=` $$\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$ `sin theta` `=` $$\frac{\color{#004ec4}{5}}{\color{#e85e00}{7}}$$ `sin theta` `=` `0.714286` `theta` `=` `sin^(-1) 0.714286` Get the inverse of `sin` Simplify this further by evaluating `sin^(-1) 0.714286` using the calculator:`1.` Press Shift or 2nd F (depending on your calculator)`2.` Press `sin``3.` Press `0.714286``4.` Press `=`The result will be: `45.5847°`Finally, round off the answer to the nearest minute.`theta` `=` `45.5847°` `=` `45°35’4.9”` Press DMS on your calculator `=` `45°35’` Round down since the seconds is less than `30”` `45°35’` -
Question 2 of 6
2. Question
A cat observes a bird’s nest on top of a tree which is `18.5 m` tall. The cat is `9.5 m` from the base of the tree. At what angle `(theta)` must the cat look up in order to see the nest? (nearest minute)- `theta=` (62)`°` (49)`'`
Hint
Help VideoCorrect
Fantastic!
Incorrect
Trigonometric Ratios (SOHCAHTOA)
Sin Ratio (SOH)
$$\sin=\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$Cos Ratio (CAH)
$$\cos=\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$Tan Ratio (TOA)
$$\tan=\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$Calculator Buttons to Use
`sin` `=` Sine function`cos` `=` Cosine function`tan` `=` Tangent functionDMS or `° ‘ ‘ ‘` `=` Degree/Minute/SecondShift or 2nd F or INV `=` Inverse function`=` `=` Equal functionNotice that the scenario creates a triangle. Label it in reference to the missing angle.$$\color{#004ec4}{\text{opposite}}=\color{#004ec4}{18.5}$$$$\color{#00880a}{\text{adjacent}}=\color{#00880a}{9.5}$$Since we now have the opposite and adjacent values, we can use the `tan` ratio to find `theta`.`tan theta` `=` $$\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$ `tan theta` `=` $$\frac{\color{#004ec4}{18.5}}{\color{#00880a}{9.5}}$$ `tan theta` `=` `1.947368` `theta` `=` `tan^(-1) 1.947368` Get the inverse of `tan` Simplify this further by evaluating `tan^(-1) 1.947368` using the calculator:`1.` Press Shift or 2nd F (depending on your calculator)`2.` Press `tan``3.` Press `1.947368``4.` Press `=`The result will be: `62.881890°`Finally, round off the answer to the nearest minute.`theta` `=` `62.881890°` `=` `62°49’8”` Press DMS on your calculator `=` `62°49’` Round down since the seconds is less than `30”` `62°49’` -
Question 3 of 6
3. Question
A tree `26 m` tall casts a shadow `31 m` long. What angle `(theta)` do the rays of the sun make with the ground? (nearest degree)- `theta=` (40)`°`
Hint
Help VideoCorrect
Well Done!
Incorrect
Trigonometric Ratios (SOHCAHTOA)
Sin Ratio (SOH)
$$\sin=\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$Cos Ratio (CAH)
$$\cos=\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$Tan Ratio (TOA)
$$\tan=\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$Calculator Buttons to Use
`sin` `=` Sine function`cos` `=` Cosine function`tan` `=` Tangent functionDMS or `° ‘ ‘ ‘` `=` Degree/Minute/SecondShift or 2nd F or INV `=` Inverse function`=` `=` Equal functionNotice that the scenario creates a triangle. Label it in reference to the missing angle.$$\color{#004ec4}{\text{opposite}}=\color{#004ec4}{26}$$$$\color{#00880a}{\text{adjacent}}=\color{#00880a}{31}$$Since we now have the opposite and adjacent values, we can use the `tan` ratio to find `theta`.`tan theta` `=` $$\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$ `tan theta` `=` $$\frac{\color{#004ec4}{26}}{\color{#00880a}{31}}$$ `tan theta` `=` `0.8387097` `theta` `=` `tan^(-1) 0.8387097` Get the inverse of `tan` Simplify this further by evaluating `tan^(-1) 0.8387097` using the calculator:`1.` Press Shift or 2nd F (depending on your calculator)`2.` Press `tan``3.` Press `0.8387097``4.` Press `=`The result will be: `39.986887°`Finally, round off the answer to the nearest degree.`theta` `=` `39.986887°` `=` `39°59’` Press DMS on your calculator `=` `40°` Round up since the minutes is more than `30’` `40°` -
Question 4 of 6
4. Question
The ray of light from a lighthouse to a boat at sea is `37.2 m` long. If the boat is `29 m` away from the base of the lighthouse, what angle `(theta)` does the ray of light make to the sea level? (nearest degree)- `theta=` (39)`°`
Hint
Help VideoCorrect
Fantastic!
Incorrect
Trigonometric Ratios (SOHCAHTOA)
Sin Ratio (SOH)
$$\sin=\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$Cos Ratio (CAH)
$$\cos=\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$Tan Ratio (TOA)
$$\tan=\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$Calculator Buttons to Use
`sin` `=` Sine function`cos` `=` Cosine function`tan` `=` Tangent functionDMS or `° ‘ ‘ ‘` `=` Degree/Minute/SecondShift or 2nd F or INV `=` Inverse function`=` `=` Equal functionNotice that the scenario creates a triangle. Label it in reference to the missing angle.$$\color{#00880a}{\text{adjacent}}=\color{#00880a}{29}$$$$\color{#e85e00}{\text{hypotenuse}}=\color{#e85e00}{37.2}$$Since we now have the adjacent and hypotenuse values, we can use the `cos` ratio to find `theta`.`cos theta` `=` $$\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$ `cos theta` `=` $$\frac{\color{#00880a}{29}}{\color{#e85e00}{37.2}}$$ `theta` `=` `cos^(-1) (29/37.2)` Get the inverse of `cos` Simplify this further by evaluating `cos^(-1) (29/37.2)` using the calculator:`1.` Press Shift or 2nd F (depending on your calculator)`2.` Press `cos``3.` Press `29``4.` Press `÷``5.` Press `37.2``6.` Press `=`The result will be: `38.7788°`Finally, round off the answer to the nearest degree.`theta` `=` `38.7788°` `=` `38°46’43”` Press DMS on your calculator `=` `39°` Round up since the minutes is more than `30’` `39°` -
Question 5 of 6
5. Question
A ladder is placed `3 m` up a wall. The distance between the foot of the ladder and the wall is `1 m`. What is the angle of inclination `(theta)` of the ladder with the horizontal floor? (nearest degree)- `theta=` (72)`°`
Hint
Help VideoCorrect
Correct!
Incorrect
Trigonometric Ratios (SOHCAHTOA)
Sin Ratio (SOH)
$$\sin=\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$Cos Ratio (CAH)
$$\cos=\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$Tan Ratio (TOA)
$$\tan=\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$Calculator Buttons to Use
`sin` `=` Sine function`cos` `=` Cosine function`tan` `=` Tangent functionDMS or `° ‘ ‘ ‘` `=` Degree/Minute/SecondShift or 2nd F or INV `=` Inverse function`=` `=` Equal functionNotice that the scenario creates a triangle. Label it in reference to the missing angle.$$\color{#004ec4}{\text{opposite}}=\color{#004ec4}{3}$$$$\color{#00880a}{\text{adjacent}}=\color{#00880a}{1}$$Since we now have the opposite and adjacent values, we can use the `tan` ratio to find `theta`.`tan theta` `=` $$\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$ `tan theta` `=` $$\frac{\color{#004ec4}{3}}{\color{#00880a}{1}}$$ `tan theta` `=` `3` `theta` `=` `tan^(-1) 3` Get the inverse of `tan` Simplify this further by evaluating `tan^(-1) 3` using the calculator:`1.` Press Shift or 2nd F (depending on your calculator)`2.` Press `tan``3.` Press `3``4.` Press `=`The result will be: `71.56505°`Finally, round off the answer to the nearest degree.`theta` `=` `71.56505°` `=` `71°33’54”` Press DMS on your calculator `=` `72°` Round up since the minutes is more than `30’` `72°` -
Question 6 of 6
6. Question
Find the size to the nearest minute of one of the base angles of the iscoseles triangle below.- (69)`°` (51)`'`
Hint
Help VideoCorrect
Well Done!
Incorrect
Trigonometric Ratios (SOHCAHTOA)
Sin Ratio (SOH)
$$\sin=\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$Cos Ratio (CAH)
$$\cos=\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$Tan Ratio (TOA)
$$\tan=\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$Calculator Buttons to Use
`sin` `=` Sine function`cos` `=` Cosine function`tan` `=` Tangent functionDMS or `° ‘ ‘ ‘` `=` Degree/Minute/SecondShift or 2nd F or INV `=` Inverse function`=` `=` Equal functionNotice that a right triangle is formed by the isosceles triangle.Redraw this triangle separately and label the values.Let `theta` be one of the base angles.Halve the base of the isosceles triangle to get the adjacent side: `8divide2=4`$$\color{#004ec4}{\text{opposite}}=\color{#004ec4}{10.9}$$$$\color{#00880a}{\text{adjacent}}=\color{#00880a}{4}$$Since we now have the opposite and adjacent values, we can use the `tan` ratio to find `theta`.`tan theta` `=` $$\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$ `tan theta` `=` $$\frac{\color{#004ec4}{10.9}}{\color{#00880a}{4}}$$ `tan theta` `=` `2.725` `theta` `=` `tan^(-1) 2.725` Get the inverse of `tan` Simplify this further by evaluating `tan^(-1) 2.725` using the calculator:`1.` Press Shift or 2nd F (depending on your calculator)`2.` Press `tan``3.` Press `2.725``4.` Press `=`The result will be: `69.84825°`Finally, round off the answer to the nearest minute.`theta` `=` `69.84825°` `=` `69°50’58”` Press DMS on your calculator `=` `69°51’` Round up since the seconds is more than `30”` `69°51’`
Quizzes
- Intro to Trigonometric Ratios (SOH CAH TOA) 1
- Intro to Trigonometric Ratios (SOH CAH TOA) 2
- Round Angles (Degrees, Minutes, Seconds)
- Evaluate Trig Expressions using a Calculator 1
- Evaluate Trig Expressions using a Calculator 2
- Trig Ratios: Solving for a Side 1
- Trig Ratios: Solving for a Side 2
- Trig Ratios: Solving for an Angle
- Angles of Elevation and Depression
- Trig Ratios Word Problems: Solving for a Side
- Trig Ratios Word Problems: Solving for an Angle
- Area of Non-Right Angled Triangles 1
- Area of Non-Right Angled Triangles 2
- Law of Sines: Solving for a Side
- Law of Sines: Solving for an Angle
- Law of Cosines: Solving for a Side
- Law of Cosines: Solving for an Angle
- Trigonometry Word Problems 1
- Trigonometry Word Problems 2
- Trigonometry Mixed Review: Part 1 (1)
- Trigonometry Mixed Review: Part 1 (2)
- Trigonometry Mixed Review: Part 1 (3)
- Trigonometry Mixed Review: Part 1 (4)
- Trigonometry Mixed Review: Part 2 (1)
- Trigonometry Mixed Review: Part 2 (2)
- Trigonometry Mixed Review: Part 2 (3)