Zero Powers 2
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 4 questions completed
Questions:
- 1
- 2
- 3
- 4
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- Answered
- Review
-
Question 1 of 4
1. Question
Simplify`(5x)^0+5x^0`- (6)
Hint
Help VideoCorrect
Correct!
Incorrect
Power of Zero
$$\color{#A57200}{a^0}=\color{#A57200}{1}$$Apply the Power of Zero, then simplify.$$(5x)^0+5\color{#A57200}{x^0}$$ `=` $$\color{#A57200}{5^0}\color{#A57200}{x^0}+(5 \times \color{#A57200}{1})$$ `a^0 =1` `=` $$(\color{#A57200}{1} \times \color{#A57200}{1})+5$$ `=` `1+5` `=` `6` `6` -
Question 2 of 4
2. Question
Simplify`2a^0 +8b^0`- (10)
Hint
Help VideoCorrect
Excellent!
Incorrect
Power of Zero
$$\color{#A57200}{a^0}=\color{#A57200}{1}$$Apply the Power of Zero, then simplify.$$2\color{#A57200}{a^0}+8\color{#A57200}{b^0}$$ `=` $$2(\color{#A57200}{1})+8(\color{#A57200}{1})$$ `a^0 =1` `=` `2+8` `=` `10` `10` -
Question 3 of 4
3. Question
Simplify`(6x^2 y^3 z)^0`- (1)
Hint
Help VideoCorrect
Keep Going!
Incorrect
Power of a Power
$${(a^\color{#007DDC}{m})}^{\color{#9a00c7}{n}}=a^{\color{#007DDC}{m} \times \color{#9a00c7}{n}}$$Power of Zero
$$\color{#A57200}{a^0}=\color{#A57200}{1}$$Apply the Power of a Power and the Power of Zero to simplify the equation.$${(6x^{\color{#007DDC}{2}}y^{\color{#007DDC}{3}}z)}^\color{#9a00c7}{0}$$ `=` $$6^{\color{#9a00c7}{0}}x^{\color{#007DDC}{2} \times \color{#9a00c7}{0}}y^{\color{#007DDC}{3} \times \color{#9a00c7}{0}}z^{\color{#9a00c7}{0}}$$ `=` $$\color{#A57200}{6^0}\color{#A57200}{x^0}\color{#A57200}{y^0}\color{#A57200}{z^0}$$ `=` $$\color{#A57200}{1} \times \color{#A57200}{1} \times \color{#A57200}{1} \times \color{#A57200}{1}$$ `a^0 =1` `=` `1` `1` -
Question 4 of 4
4. Question
Simplify`(3b^2)/(b^2)`- (3)
Hint
Help VideoCorrect
Fantastic!
Incorrect
Quotient of Powers
$${\color{#00880A}{a}^m}\div{\color{#00880A}{a}^n}=\frac{{\color{#00880A}{a}^m}}{{\color{#00880A}{a}^n}}=\color{#00880A}{a}^{m-n}$$Power of Zero
$$\color{#A57200}{a^0}=\color{#A57200}{1}$$Apply the Quotient of Powers and the Power of Zero to simplify the equation.$$\frac{3\color{#00880A}{b}^2}{\color{#00880A}{b}^2}$$ `=` $$3\color{#00880A}{b}^{2-2}$$ `=` $$3\color{#A57200}{b^0}$$ `=` $$3 \times \color{#A57200}{1}$$ `a^0 =1` `=` `3` `3`
Quizzes
- Exponent Notation 1
- Exponent Notation 2
- Exponent Notation 3
- Multiply Exponents (Product Rule) 1
- Multiply Exponents (Product Rule) 2
- Multiply Exponents (Product Rule) 3
- Multiply Exponents (Product Rule) 4
- Divide Exponents (Quotient Rule) 1
- Divide Exponents (Quotient Rule) 2
- Powers of a Power 1
- Powers of a Power 2
- Powers of a Power 3
- Powers of a Power 4
- Zero Powers 1
- Zero Powers 2
- Negative Exponents 1
- Negative Exponents 2
- Negative Exponents 3