Evaluate Logarithms 3
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 4 questions completed
Questions:
- 1
- 2
- 3
- 4
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- Answered
- Review
-
Question 1 of 4
1. Question
Solve for `log_e 7.5`, given that:`log_e 2=0.6931``log_e 3=1.0986``log_e 5=1.6094`Round your answer to 4 decimal places- `log_e 7.5=` (2.0149)
Hint
Help VideoCorrect
Keep Going!
Incorrect
Laws of Logarithms
$$\log_{\color{#9a00c7}{b}} {\color{#00880A}{x}\color{#e65021}{y}}=\log_{\color{#9a00c7}{b}} \color{#00880A}{x} + \log_{\color{#9a00c7}{b}} \color{#e65021}{y}$$$$\log_{\color{#9a00c7}{b}} \frac{\color{#00880A}{x}}{\color{#e65021}{y}}=\log_{\color{#9a00c7}{b}} \color{#00880A}{x}-\log_{\color{#9a00c7}{b}} \color{#e65021}{y}$$Expand the given logarithmic expression$$\log_e 7.5$$ `=` $$\log_e \frac{15}{2}$$ `7.5=15/2` `=` $$\log_e \frac{(5)(3)}{2}$$ `15=(5)(3)` `=` $$\log_\color{#9a00c7}{e} {\frac{\color{#00880A}{(5)(3)}}{\color{#e65021}{2}}}$$ `=` $$\log_\color{#9a00c7}{e} \color{#00880A}{(5)(3)}-\log_\color{#9a00c7}{e} \color{#e65021}{2}$$ $$log_b \frac{x}{y}=log_b x-\log_b y$$ `=` $$\log_\color{#9a00c7}{e} \color{#00880A}{(5)}\color{#e65021}{(3)}-\log_e 2$$ `=` $$\log_\color{#9a00c7}{e} \color{#00880A}{5}+\log_\color{#9a00c7}{e} \color{#e65021}{3}-\log_e 2$$ `log_b xy=log_b x+log_b y` Substitute the given values$$\log_e 2$$ `=` $$0.6931$$ $$\log_e 3$$ `=` $$1.0986$$ $$\log_e 5$$ `=` $$1.6094$$ `log_e 5+log_e 3-log_e 2` `=` `1.6094+1.0986-0.6931` `=` `2.0149` `2.0149` -
Question 2 of 4
2. Question
Solve for `log_e 200`, given that:`log_e 2=0.6931``log_e 5=1.6094`Round your answer to 4 decimal places- `log_e 200=` (5.2981)
Hint
Help VideoCorrect
Great Work!
Incorrect
Laws of Logarithms
$$\log_{\color{#9a00c7}{b}} {\color{#00880A}{x}\color{#e65021}{y}}=\log_{\color{#9a00c7}{b}} \color{#00880A}{x} + \log_{\color{#9a00c7}{b}} \color{#e65021}{y}$$$$\log_b x^\color{#004ec4}{p}=\color{#004ec4}{p}\log_b x$$Expand the given logarithmic expression$$\log_e 200$$ `=` $$\log_e (25)(8)$$ `200=(25)(8)` `=` $$\log_\color{#9a00c7}{e} \color{#00880A}{(25)}\color{#e65021}{(8)}$$ `=` $$\log_\color{#9a00c7}{e} \color{#00880A}{25}+\log_\color{#9a00c7}{e} \color{#e65021}{8}$$ `log_b xy=log_b x+log_b y` `=` $$\log_e 5^2+\log_e 8$$ `25=5^2` `=` $$\log_e 5^2+\log_e 2^3$$ `8=2^3` `=` $$\color{#004ec4}{2}\log_{e} 5+\color{#004ec4}{3}\log_{e} 2$$ `log_b x^p=p log_b x` Substitute the given values$$\log_e 2$$ `=` $$0.6931$$ $$\log_e 5$$ `=` $$1.6094$$ `2log_e 5+3log_e 2` `=` `2(1.6094)+3(0.6931)` `=` `3.2188+2.0793` `=` `5.2981` `5.2981` -
Question 3 of 4
3. Question
Solve for `log_e (1/25)`, given that:`log_e 5=1.6094`Round your answer to 4 decimal places- `log_e (1/25)=` (-3.2188)
Hint
Help VideoCorrect
Excellent!
Incorrect
Laws of Logarithms
$$\log_b x^\color{#004ec4}{p}=\color{#004ec4}{p}\log_b x$$Simplify the given logarithmic expression$$\log_e \frac{1}{25}$$ `=` $$\log_e \frac{1}{\color{#CC0000}{5^2}}$$ `25=5^2` `=` $$\log_e 5^{-2}$$ Reciprocate `1/(5^2)` `=` $$\color{#004ec4}{-2}\log_{e} 5$$ `log_b x^p=p log_b x` Substitute the given values`log_e 5` `=` `1.6094` `-2log_e 5` `=` `-2(1.6094)` `=` `-3.2188` `-3.2188` -
Question 4 of 4
4. Question
Solve for `log_e 2.5`, given that:`log_e 2=0.6931``log_e 5=1.6094`Round your answer to 4 decimal places- `log_e 2.5=` (0.9163)
Hint
Help VideoCorrect
Exceptional!
Incorrect
Laws of Logarithms
$$\log_{\color{#9a00c7}{b}} \frac{\color{#00880A}{x}}{\color{#e65021}{y}}=\log_{\color{#9a00c7}{b}} \color{#00880A}{x}-\log_{\color{#9a00c7}{b}} \color{#e65021}{y}$$Expand the given logarithmic expression$$\log_e 2.5$$ `=` $$\log_e \frac{5}{2}$$ `2.5=5/2` `=` $$\log_\color{#9a00c7}{e} {\frac{\color{#00880A}{5}}{\color{#e65021}{2}}}$$ `=` $$\log_\color{#9a00c7}{e} \color{#00880A}{5}-\log_\color{#9a00c7}{e} \color{#e65021}{2}$$ $$log_b \frac{x}{y}=log_b x-\log_b y$$ Substitute the given values$$\log_e 2$$ `=` $$0.6931$$ $$\log_e 5$$ `=` $$1.6094$$ `log_e 5-log_e 2` `=` `1.6094-0.6931` `=` `0.9163` `0.9163`
Quizzes
- Convert Between Logarithmic and Exponent Form 1
- Convert Between Logarithmic and Exponent Form 2
- Evaluate Logarithms 1
- Evaluate Logarithms 2
- Evaluate Logarithms 3
- Expand Log Expressions
- Simplify Log Expressions 1
- Simplify Log Expressions 2
- Simplify Log Expressions 3
- Logarithmic Equations 1
- Logarithmic Equations 2
- Logarithmic Equations 3
- Change Of Base Formula
- Solving Exponential Equations Using Log Laws