Topics
>
Precalculus>
Trigonometry>
Angles of Elevation and Depression>
Angles of Elevation and DepressionAngles of Elevation and Depression
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 7 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
- 6
- 7
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- Answered
- Review
-
Question 1 of 7
1. Question
From the top of a control tower at an airport, the angle of depression of a plane on a tarmac is `41°22’`. The height of the control tower is `51 m`. Find the distance between the plane and the central base of the control tower `(x)` to the nearest metre.- `x=` (58)`m`
Hint
Help VideoCorrect
Great Work!
Incorrect
Trigonometric Ratios (SOHCAHTOA)
Sin Ratio (SOH)
$$\sin=\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$Cos Ratio (CAH)
$$\cos=\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$Tan Ratio (TOA)
$$\tan=\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$Calculator Buttons to Use
`sin` `=` Sine function`cos` `=` Cosine function`tan` `=` Tangent functionDMS or `° ‘ ‘ ‘` `=` Degree/Minute/Second`=` `=` Equal functionAngle Relationships with Parallel Lines
Alternate Angles
Corresponding Angles
Co-Interior Angles
Alternate Angles are equal.First, knowing that alternate angles are equal, label the angle inside the triangle which is the Angle of Elevation.Now, label the triangle in reference to the angle.$$\color{#004ec4}{\text{opposite}}=\color{#004ec4}{51}$$$$\color{#00880a}{\text{adjacent}}=\color{#00880a}{x}$$Since we now have the opposite and adjacent values, we can use the `tan` ratio to find `x`.`tan41°22’` `=` $$\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$ `tan41°22’` `=` $$\frac{\color{#004ec4}{51}}{\color{#00880a}{x}}$$ `x` `=` `51/(tan41°22′)` Swap the constant on the left side and the denominator on the right side Simplify this further by evaluating `tan41°22’` using the calculator:`1.` Press `tan``2.` Press `41` and DMS or `° ‘ ‘ ‘``3.` Press `22` and DMS or `° ‘ ‘ ‘` again`4.` Press `=`The result will be: `0.880585`Continue solving for `x`.`tan41°22’=0.880585``x` `=` `51/(tan41°22′)` `=` `51/0.880585` `=` `57.916` `=` `58 m` Rounded off to the nearest metre `58 m` -
Question 2 of 7
2. Question
From the point on top of a building that is `135m` tall, the angle of depression of a car is `45°39’`. What is the distance `(x)` of the car from the foot of the building (nearest metre)?- `x=` (132)`m`
Hint
Help VideoCorrect
Fantastic!
Incorrect
Trigonometric Ratios (SOHCAHTOA)
Sin Ratio (SOH)
$$\sin=\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$Cos Ratio (CAH)
$$\cos=\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$Tan Ratio (TOA)
$$\tan=\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$Calculator Buttons to Use
`sin` `=` Sine function`cos` `=` Cosine function`tan` `=` Tangent functionDMS or `° ‘ ‘ ‘` `=` Degree/Minute/Second`=` `=` Equal functionAngle Relationships with Parallel Lines
Alternate Angles
Corresponding Angles
Co-Interior Angles
Alternate Angles are equal.First, knowing that alternate angles are equal, label the angle inside the triangle which is the Angle of Elevation.Now, label the triangle in reference to the angle.$$\color{#004ec4}{\text{opposite}}=\color{#004ec4}{135}$$$$\color{#00880a}{\text{adjacent}}=\color{#00880a}{x}$$Since we now have the opposite and adjacent values, we can use the `tan` ratio to find `x`.`tan45°39’` `=` $$\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$ `tan45°39’` `=` $$\frac{\color{#004ec4}{135}}{\color{#00880a}{x}}$$ `x` `=` `135/(tan45°39′)` Swap the constant on the left side and the denominator on the right side Simplify this further by evaluating `tan45°39’` using the calculator:`1.` Press `tan``2.` Press `45` and DMS or `° ‘ ‘ ‘``3.` Press `39` and DMS or `° ‘ ‘ ‘` again`4.` Press `=`The result will be: `1.02295`Continue solving for `x`.`tan45°39’=1.02295``x` `=` `135/(tan45°39′)` `=` `135/1.02295` `=` `131.971` `=` `132 m` Rounded off to the nearest metre `132 m` -
Question 3 of 7
3. Question
A section of a roller coaster ride has a `57°` angle of depression. If the length of the section is `42m`, what is the length `(h)` of its vertical drop (`1` decimal place)?- `h=` (35.2)`m`
Hint
Help VideoCorrect
Good Job!
Incorrect
Sin Ratio (SOH)
$$\sin=\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$Cos Ratio (CAH)
$$\cos=\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$Tan Ratio (TOA)
$$\tan=\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$Calculator Buttons to Use
`sin` `=` Sine function`cos` `=` Cosine function`tan` `=` Tangent functionDMS or `° ‘ ‘ ‘` `=` Degree/Minute/Second`=` `=` Equal functionFirst, redraw the triangle outside the rollercoaster so that the given angle can be used.Now, label the triangle in reference to the angle.$$\color{#004ec4}{\text{opposite}}=\color{#004ec4}{h}$$$$\color{#e85e00}{\text{hypotenuse}}=\color{#e85e00}{42}$$Since we now have the opposite and hypotenuse values, we can use the `sin` ratio to find `h`.`sin57°` `=` $$\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$ `sin57°` `=` $$\frac{\color{#004ec4}{h}}{\color{#e85e00}{42}}$$ `42xx``sin57°` `=` `h/42``xx42` Multiply both sides by `42` `42sin57°` `=` `h` `h` `=` `42sin57°` Simplify this further by evaluating `sin57°` using the calculator:`1.` Press `sin``2.` Press `45` and DMS or `° ‘ ‘ ‘``3.` Press `=`The result will be: `0.83867`Continue solving for `h`.`sin57°=0.83867``h` `=` `42sin57°` `=` `42xx0.83867` `=` `35.224` `=` `35.2 m` Rounded off to `1` decimal place `35.2 m` -
Question 4 of 7
4. Question
Two buildings of different heights stand on the opposite sides of the street and are `39`m apart. A man standing on the roof of the shorter building reaches an angle of elevation of `49°58’` to look at the roof of the taller building. If the shorter building is `68`m tall, what is the height `(h)` of the taller building to the nearest metre?- `h=` (114)m
Hint
Help VideoCorrect
Good Job!
Incorrect
Trigonometric Ratios (SOHCAHTOA)
Sin Ratio (SOH)
$$\sin=\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$Cos Ratio (CAH)
$$\cos=\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$Tan Ratio (TOA)
$$\tan=\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$Calculator Buttons to Use
`sin` `=` Sine function`cos` `=` Cosine function`tan` `=` Tangent functionDMS or `° ‘ ‘ ‘` `=` Degree/Minute/Second`=` `=` Equal functionFirst, form a right triangle from the given diagram and label its values.Let `x` be the difference in height between the two buildings.Later on, we can solve for `h` by adding `68`m and the value of `x`.Now, label the triangle in reference to the known angle.$$\color{#004ec4}{\text{opposite}}=\color{#004ec4}{x}$$$$\color{#00880a}{\text{adjacent}}=\color{#00880a}{39}$$Since we now have the opposite and adjacent values, we can use the `tan` ratio to find `x`.`tan49°58’` `=` $$\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$ `tan49°58’` `=` $$\frac{\color{#004ec4}{x}}{\color{#00880a}{39}}$$ `39times``tan49°58’` `=` $$\frac{\color{#004ec4}{x}}{\color{#00880a}{39}}\color{#CC0000}{\times39}$$ Multiply both sides by `39` `39tan49°58’` `=` `x` `x` `=` `39tan49°58’` Simplify this further by evaluating `tan49°58’` using the calculator:`1.` Press `tan``2.` Press `49` and DMS or `° ‘ ‘ ‘``3.` Press `58` and DMS or `° ‘ ‘ ‘` again`4.` Press `=`The result will be: `1.1903465`Continue solving for `x`.`tan49°58’=1.1903465``x` `=` `39tan49°58’` `=` `39times1.1903465` `=` `46.4235` `=` `46`m Rounded off to the nearest metre Finally, solve for `h` by adding the value of `x` and the height of the shorter building.`h` `=` `x+68` `=` `46+68` `=` `114`m `114`m -
Question 5 of 7
5. Question
Mia finds the angle of elevation of a cliff `310m` above ground level to be `20°`. After walking towards the cliff, she finds that the angle of elevation increases to `29°`. How far did Mia walk `(x) ?` (nearest metre)- `x=` (292)`m`
Hint
Help VideoCorrect
Correct!
Incorrect
Trigonometric Ratios (SOHCAHTOA)
Sin Ratio (SOH)
$$\sin=\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$Cos Ratio (CAH)
$$\cos=\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$Tan Ratio (TOA)
$$\tan=\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$Calculator Buttons to Use
`sin` `=` Sine function`cos` `=` Cosine function`tan` `=` Tangent functionDMS or `° ‘ ‘ ‘` `=` Degree/Minute/Second`=` `=` Equal functionNotice that the scenario creates two right triangles. Subtracting their bases will give us `x`.Label each triangle bases with `a` and `b`.`a``-``b``=x`Draw each triangle separately and solve for their bases.Larger triangle with base `a`:$$\color{#004ec4}{\text{opposite}}=\color{#004ec4}{310}$$$$\color{#00880a}{\text{adjacent}}=\color{#00880a}{a}$$Since we now have the opposite and adjacent values, we can use the `tan` ratio to find `a`.`tan20°` `=` $$\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$ `tan20°` `=` $$\frac{\color{#004ec4}{310}}{\color{#00880a}{a}}$$ `a` `=` `310/(tan20°)` Swap the constant on the left side and the denominator on the right side `a` `=` `310/0.36397` Press `tan` `20` `=` on your calculator `a` `=` `851.719` Smaller triangle with base `b`:$$\color{#004ec4}{\text{opposite}}=\color{#004ec4}{310}$$$$\color{#00880a}{\text{adjacent}}=\color{#00880a}{b}$$Since we now have the opposite and adjacent values, we can use the `tan` ratio to find `b`.`tan29°` `=` $$\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$ `tan29°` `=` $$\frac{\color{#004ec4}{310}}{\color{#00880a}{b}}$$ `b` `=` `310/(tan29°)` Swap the constant on the left side and the denominator on the right side `b` `=` `310/0.5543` Press `tan` `29` `=` on your calculator `b` `=` `559.255` Finally, get the difference of the two bases to solve for `x`.`a=851.719``b=559.255``x` `=` `a``-``b` `=` `851.719``-``559.255` `=` `292.464 m` `=` `292 m` Round off to the nearest metre `292 m` -
Question 6 of 7
6. Question
A radar station measures the angle of elevation of a missile to be `31°10’` and the line of sight distance is `58 km`. What is the altitude `(`height`,h)` of the missile? (nearest kilometre)- `h=` (30)`km`
Hint
Help VideoCorrect
Well Done!
Incorrect
Trigonometric Ratios (SOHCAHTOA)
Sin Ratio (SOH)
$$\sin=\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$Cos Ratio (CAH)
$$\cos=\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$Tan Ratio (TOA)
$$\tan=\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$Calculator Buttons to Use
`sin` `=` Sine function`cos` `=` Cosine function`tan` `=` Tangent functionDMS or `° ‘ ‘ ‘` `=` Degree/Minute/Second`=` `=` Equal functionNotice that the scenario creates a triangle. Label it in reference to the angle.$$\color{#004ec4}{\text{opposite}}=\color{#004ec4}{h}$$$$\color{#e85e00}{\text{hypotenuse}}=\color{#e85e00}{58}$$Since we now have the opposite and hypotenuse values, we can use the `sin` ratio to find `h`.`sin31°10’` `=` $$\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$ `sin31°10’` `=` $$\frac{\color{#004ec4}{h}}{\color{#e85e00}{58}}$$ `58xx``sin31°10’` `=` `h/58``xx58` Multiply both sides by `58` `58sin31°10’` `=` `h` `h` `=` `58sin31°10’` Simplify this further by evaluating `sin31°10’` using the calculator:`1.` Press `sin``2.` Press `31` and DMS or `° ‘ ‘ ‘``3.` Press `10` and DMS or `° ‘ ‘ ‘` again`4.` Press `=`The result will be: `0.517529`Continue solving for `h`.`sin31°10’=0.517529``h` `=` `58sin31°10’` `=` `58xx0.517529` `=` `30.0167` `=` `30 km` Rounded off to the nearest kilometre `30 km` -
Question 7 of 7
7. Question
A plane is flying at an altitude of `950 m`. Emily, who is standing on the ground observes the angle of elevation to the plane at `70°`. Then a few seconds later, the angle or elevation has changed to `25°`. What is the distance `(x)` that the plane flown in these seconds?- `x=` (1692)`m`
Hint
Help VideoCorrect
Excellent!
Incorrect
Trigonometric Ratios (SOHCAHTOA)
Sin Ratio (SOH)
$$\sin=\frac{\color{#004ec4}{\text{opposite}}}{\color{#e85e00}{\text{hypotenuse}}}$$Cos Ratio (CAH)
$$\cos=\frac{\color{#00880a}{\text{adjacent}}}{\color{#e85e00}{\text{hypotenuse}}}$$Tan Ratio (TOA)
$$\tan=\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$Calculator Buttons to Use
`sin` `=` Sine function`cos` `=` Cosine function`tan` `=` Tangent functionDMS or `° ‘ ‘ ‘` `=` Degree/Minute/Second`=` `=` Equal functionAngle Relationships with Parallel Lines
Alternate Angles
Corresponding Angles
Co-Interior Angles
Alternate Angles are equal.First, knowing that alternate angles are equal, use the given Angles of Elevation to form Angles of Depression.Notice that the scenario creates two right triangles. Subtracting their top sides will give us `x`.Label each of those sides with `a` and `b`.`x=``a``-``b`Draw each triangle separately and solve for their top sides.Larger triangle with side `a`:$$\color{#004ec4}{\text{opposite}}=\color{#004ec4}{950}$$$$\color{#00880a}{\text{adjacent}}=\color{#00880a}{a}$$Since we now have the opposite and adjacent values, we can use the `tan` ratio to find `a`.`tan25°` `=` $$\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$ `tan25°` `=` $$\frac{\color{#004ec4}{950}}{\color{#00880a}{a}}$$ `a` `=` `950/(tan25°)` Swap the constant on the left side and the denominator on the right side `a` `=` `950/0.466308` Press `tan` `25` `=` on your calculator `a` `=` `2037.28` Smaller triangle with side `b`:$$\color{#004ec4}{\text{opposite}}=\color{#004ec4}{950}$$$$\color{#00880a}{\text{adjacent}}=\color{#00880a}{b}$$Since we now have the opposite and adjacent values, we can use the `tan` ratio to find `b`.`tan70°` `=` $$\frac{\color{#004ec4}{\text{opposite}}}{\color{#00880a}{\text{adjacent}}}$$ `tan70°` `=` $$\frac{\color{#004ec4}{950}}{\color{#00880a}{b}}$$ `b` `=` `950/(tan70°)` Swap the constant on the left side and the denominator on the right side `b` `=` `950/2.747477` Press `tan` `70` `=` on your calculator `b` `=` `345.771` Finally, get the difference of the two sides to solve for `x`.`a=2037.28``b=345.771``x` `=` `a``-``b` `=` `2037.28``-``345.771` `=` `1691.509 m` `=` `1692 m` Round off to the nearest metre `1692 m`
Quizzes
- Intro to Trigonometric Ratios (SOH CAH TOA) 1
- Intro to Trigonometric Ratios (SOH CAH TOA) 2
- Round Angles (Degrees, Minutes, Seconds)
- Evaluate Trig Expressions using a Calculator 1
- Evaluate Trig Expressions using a Calculator 2
- Trig Ratios: Solving for a Side 1
- Trig Ratios: Solving for a Side 2
- Trig Ratios: Solving for an Angle
- Angles of Elevation and Depression
- Trig Ratios Word Problems: Solving for a Side
- Trig Ratios Word Problems: Solving for an Angle
- Area of Non-Right Angled Triangles 1
- Area of Non-Right Angled Triangles 2
- Law of Sines: Solving for a Side
- Law of Sines: Solving for an Angle
- Law of Cosines: Solving for a Side
- Law of Cosines: Solving for an Angle
- Trigonometry Word Problems 1
- Trigonometry Word Problems 2
- Trigonometry Mixed Review: Part 1 (1)
- Trigonometry Mixed Review: Part 1 (2)
- Trigonometry Mixed Review: Part 1 (3)
- Trigonometry Mixed Review: Part 1 (4)
- Trigonometry Mixed Review: Part 2 (1)
- Trigonometry Mixed Review: Part 2 (2)
- Trigonometry Mixed Review: Part 2 (3)