Topics
>
Algebra 2>
Linear Equations and Graphs>
Distance Between Two Points>
Distance Between Two Points 3Distance Between Two Points 3
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 6 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
- 6
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- 6
- Answered
- Review
-
Question 1 of 6
1. Question
Find the distance between each pair of points.Round your answer to the nearest tenth.- `\text(Distance) =` (5.1)`\text(units)`
Correct
Well Done!
Incorrect
Distance Formula
$$d=\sqrt{(\color{#9202AA}{x_2}-\color{#9202AA}{x_1})^2+(\color{#00880A}{y_2}-\color{#00880A}{y_1})^2}$$First, label the given coordinates`A(``-4``,``4``) = A(``x_1``,``y_1``)``B(``1``,``3``) = B(``x_2``,``y_2``)`Solve using the Distance Formula`\text(Distance)` `=` $$\sqrt{(\color{#9202AA}{x_2}-\color{#9202AA}{x_1})^2+(\color{#00880A}{y_2}-\color{#00880A}{y_1})^2}$$ Distance Formula `=` $$\sqrt{(\color{#9202AA}{1}-\color{#9202AA}{(-4)})^2+(\color{#00880A}{3}-\color{#00880A}{4})^2}$$ Plug in the coordinates `=` `sqrt(5^2 + (-1)^2)` Simplify `=` `sqrt(25 + 1)` `=` `sqrt(26)` Take the square root `=` `5.099019514` `=` `5.1` units Round to the nearest tenth `\text(Distance) =5.1 \text(units)` -
Question 2 of 6
2. Question
Find the distance between each pair of points.Round your answer to the nearest tenth.- `\text(Distance) =` (3.6)`\text(units)`
Correct
Correct!
Incorrect
Distance Formula
$$d=\sqrt{(\color{#9202AA}{x_2}-\color{#9202AA}{x_1})^2+(\color{#00880A}{y_2}-\color{#00880A}{y_1})^2}$$First, label the given coordinates`A(``1``,``1``) = A(``x_1``,``y_1``)``B(``4``,``3``) = B(``x_2``,``y_2``)`Solve using the Distance Formula`\text(Distance)` `=` $$\sqrt{(\color{#9202AA}{x_2}-\color{#9202AA}{x_1})^2+(\color{#00880A}{y_2}-\color{#00880A}{y_1})^2}$$ Distance Formula `=` $$\sqrt{(\color{#9202AA}{4}-\color{#9202AA}{1})^2+(\color{#00880A}{3}-\color{#00880A}{1})^2}$$ Plug in the coordinates `=` `sqrt(3^2 + 2^2)` Simplify `=` `sqrt(9 + 4)` `=` `sqrt(13)` Take the square root `=` `3.605551275` `=` `3.6` units Round to the nearest tenth `\text(Distance) =3.6 \text(units)` -
Question 3 of 6
3. Question
Find the distance between `A(-3,5)` and `B(2,1)`
Round your answer to `2` decimal places- Distance`=` (6.40)units
Correct
Keep Going!
Incorrect
Distance Formula
`d=sqrt((color(darkviolet)(x_2-x_1))^2+(color(forestgreen)(y_2-y_1))^2)`First, label the given coordinates`A(color(darkviolet)(-3),color(forestgreen)(5))=A(color(darkviolet)(x_1),color(forestgreen)(y_1))``B(color(darkviolet)(2),color(forestgreen)(1))=B(color(darkviolet)(x_2),color(forestgreen)(y_2))`Solve using the Distance FormulaDistance `=` `sqrt((color(darkviolet)(x_2-x_1))^2+(color(forestgreen)(y_2-y_1))^2)` Distance Formula `=` `sqrt((color(darkviolet)(2-(-3)))^2+(color(forestgreen)(1-5))^2)` Plug in the coordinates `=` `sqrt(5^2 + (-4)^2)` Simplify `=` `sqrt(25 + 16)` `=` `sqrt(41)` Take the square root `=` `6.403124` `=` `6.40` Rounded to `2` decimal places Distance`=6.40 \ text(units)` -
Question 4 of 6
4. Question
Find the distance between `A(1.5,1)` and `B(4,-2)`
Round your answer to `2` decimal places- Distance`=` (3.91)units
Correct
Keep Going!
Incorrect
Distance Formula
`d=sqrt((color(darkviolet)(x_2-x_1))^2+(color(forestgreen)(y_2-y_1))^2)`First, label the given coordinates`A(color(darkviolet)(1.5),color(forestgreen)(1))=A(color(darkviolet)(x_1),color(forestgreen)(y_1))``B(color(darkviolet)(4),color(forestgreen)(-2))=B(color(darkviolet)(x_2),color(forestgreen)(y_2))`Solve using the Distance FormulaDistance `=` `sqrt((color(darkviolet)(x_2-x_1))^2+(color(forestgreen)(y_2-y_1))^2)` Distance Formula `=` `sqrt((color(darkviolet)(1.5-4)^2+(color(forestgreen)(1-(-2)))^2)` Plug in the coordinates `=` `sqrt((-2.5)^2 + 3^2)` Simplify `=` `sqrt(6.25 + 9)` `=` `sqrt(15.25)` Take the square root `=` `3.905125` `=` `3.91` Rounded to `2` decimal places Distance`=3.91 \ text(units)` -
Question 5 of 6
5. Question
Find the distance between `A(-1,5)` and `B(0,-3)`
Round your answer to `2` decimal places- Distance`=` (8.06)units
Correct
Keep Going!
Incorrect
Distance Formula
`d=sqrt((color(darkviolet)(x_2-x_1))^2+(color(forestgreen)(y_2-y_1))^2)`First, label the given coordinates`A(color(darkviolet)(-1),color(forestgreen)(5))=A(color(darkviolet)(x_1),color(forestgreen)(y_1))``B(color(darkviolet)(0),color(forestgreen)(-3))=B(color(darkviolet)(x_2),color(forestgreen)(y_2))`Solve using the Distance FormulaDistance `=` `sqrt((color(darkviolet)(x_2-x_1))^2+(color(forestgreen)(y_2-y_1))^2)` Distance Formula `=` `sqrt((color(darkviolet)(-1-0))^2+(color(forestgreen)(5-(-3)))^2)` Plug in the coordinates `=` `sqrt((-1)^2 + 8^2)` Simplify `=` `sqrt(1 + 64)` `=` `sqrt(65)` Take the square root `=` `8.062258 `=` `8.06` Rounded to `2` decimal places Distance`=8.06 \ text(units)` -
Question 6 of 6
6. Question
Find the distance between `A(-2,2)` and `B(2,-1)`
Round your answer to `2` decimal places- Distance`=` (5)units
Correct
Keep Going!
Incorrect
Distance Formula
`d=sqrt((color(darkviolet)(x_2-x_1))^2+(color(forestgreen)(y_2-y_1))^2)`First, label the given coordinates`A(color(darkviolet)(-2),color(forestgreen)(2))=A(color(darkviolet)(x_1),color(forestgreen)(y_1))``B(color(darkviolet)(2),color(forestgreen)(-1))=B(color(darkviolet)(x_2),color(forestgreen)(y_2))`Solve using the Distance FormulaDistance `=` `sqrt((color(darkviolet)(x_2-x_1))^2+(color(forestgreen)(y_2-y_1))^2)` Distance Formula `=` `sqrt((color(darkviolet)(-2-2))^2+(color(forestgreen)(2-(-1)))^2)` Plug in the coordinates `=` `sqrt((-4)^2 + 3^2)` Simplify `=` `sqrt(16 + 9)` `=` `sqrt(25)` Take the square root `=` `5.00` `=` `5` Rounded to `2` decimal places Distance`=5 \ text(units)`
Quizzes
- Distance Between Two Points 1
- Distance Between Two Points 2
- Distance Between Two Points 3
- Midpoint of a Line 1
- Midpoint of a Line 2
- Midpoint of a Line 3
- Slope of a Line 1
- Slope of a Line 2
- Slope Intercept Form: Graph an Equation 1
- Slope Intercept Form: Graph an Equation 2
- Slope Intercept Form: Write an Equation 1
- Graph Linear Inequalities 1
- Convert Standard Form and Slope Intercept Form 1
- Convert Standard Form and Slope Intercept Form 2
- Point Slope Form 1
- Point Slope Form 2
- Parallel Lines 1
- Parallel Lines 2
- Perpendicular Lines 1
- Perpendicular Lines 2