Topics
>
Statistics and Probability>
Probability>
Complementary Probability>
Complementary Probability 1Complementary Probability 1
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 8 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- Answered
- Review
-
Question 1 of 8
1. Question
Find the probability of drawing a ball from this jar and getting:`(i)` a non-Brown ball`(ii)` a non-Orange ballWrite fractions in the format “a/b”-
`(i)` (3/8, ⅜)`(ii)` (5/8, ⅝)
Hint
Help VideoCorrect
Well Done!
Incorrect
Probability Formula
$$\mathsf{P(E)}=\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$Complementary Probability
$$\mathsf{P(\dot{E})}=1-\mathsf{P(E)}$$`(i)` Find the probability of not drawing a Brown ballStart by finding the probability of drawing a Brown ballfavourable outcomes`=``5` (`5` Brown balls)total outcomes`=``8` (`8` total balls)$$ \mathsf{P(B)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{5}}{\color{#007DDC}{8}}$$ Substitute values Substitute this into the Complementary Probability formula$$ \mathsf{P(\dot{Brown})} $$ `=` $$1-\mathsf{P(Brown)}$$ Complementary Probability `=` $$1-\frac{5}{8}$$ Substitute values `=` $$\frac{8}{8}-\frac{5}{8}$$ `=` $$\frac{3}{8}$$ `(ii)` Find the probability of not drawing an Orange ballStart by finding the probability of drawing an Orange ballfavourable outcomes`=``3` (`3` Orange balls)total outcomes`=``8` (`8` total balls)$$ \mathsf{P(Orange)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{3}}{\color{#007DDC}{8}}$$ Substitute values Substitute this into the Complementary Probability formula$$ \mathsf{P(\dot{Orange})} $$ `=` $$1-\mathsf{P(Orange)}$$ Complementary Probability `=` $$1-\frac{3}{8}$$ Substitute values `=` $$\frac{8}{8}-\frac{3}{8}$$ `=` $$\frac{5}{8}$$ `(i) 3/8``(ii) 5/8` -
-
Question 2 of 8
2. Question
A six-sided dice has the letters `C,H,A,N,C,E` on its sides instead of numbers. Find the probability of rolling this dice and getting:`(i)` a non-`C` side`(ii)` a non-Vowel sideWrite fractions in the format “a/b”-
`(i)` (2/3, ⅔)`(ii)` (2/3, ⅔)
Hint
Help VideoCorrect
Nice Job!
Incorrect
Probability Formula
$$\mathsf{P(E)}=\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$Complementary Probability
$$\mathsf{P(\dot{E})}=1-\mathsf{P(E)}$$`(i)` Find the probability rolling the dice and not getting `C`Start by finding the probability of getting `C`favourable outcomes`=``2` (`C,C`)total outcomes`=``6` (`C,H,A,N,C,E`)$$ \mathsf{P(C)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{2}}{\color{#007DDC}{6}}$$ Substitute values `=` $$\frac{1}{3}$$ Substitute this into the Complementary Probability formula$$ \mathsf{P(\dot{C})} $$ `=` $$1-\mathsf{P(C)}$$ Complementary Probability `=` $$1-\frac{1}{3}$$ Substitute values `=` $$\frac{3}{3}-\frac{1}{3}$$ `=` $$\frac{2}{3}$$ `(ii)` Find the probability rolling the dice and not getting a VowelStart by finding the probability of getting a Vowelfavourable outcomes`=``2` (`A,E`)total outcomes`=``6` (`C,H,A,N,C,E`)$$ \mathsf{P(Vowel)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{2}}{\color{#007DDC}{6}}$$ Substitute values `=` $$\frac{1}{3}$$ Substitute this into the Complementary Probability formula$$ \mathsf{P(\dot{Vowel})} $$ `=` $$1-\mathsf{P(Vowel)}$$ Complementary Probability `=` $$1-\frac{1}{3}$$ Substitute values `=` $$\frac{3}{3}-\frac{1}{3}$$ `=` $$\frac{2}{3}$$ `(i) 2/3``(ii) 2/3` -
-
Question 3 of 8
3. Question
Find the probability of drawing from a standard deck of cards and getting:`(i)` a non-Red card`(ii)` a non-King of Hearts cardWrite fractions in the format “a/b”-
`(i)` (1/2, ½)`(ii)` (51/52)
Hint
Help VideoCorrect
Excellent!
Incorrect
Probability Formula
$$\mathsf{P(E)}=\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$Complementary Probability
$$\mathsf{P(\dot{E})}=1-\mathsf{P(E)}$$`(i)` Find the probability drawing from a standard deck of cards and not getting a Red cardStart by finding the probability of drawing a Red cardfavourable outcomes`=``26` (`13` Hearts cards, `13` Diamonds cards)total outcomes`=``52` (a standard deck has `52` cards)$$ \mathsf{P(Red)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{26}}{\color{#007DDC}{52}}$$ Substitute values `=` $$\frac{1}{2}$$ Substitute this into the Complementary Probability formula$$ \mathsf{P(\dot{Red})} $$ `=` $$1-\mathsf{P(Red)}$$ Complementary Probability `=` $$1-\frac{1}{2}$$ Substitute values `=` $$\frac{2}{2}-\frac{1}{2}$$ `=` $$\frac{1}{2}$$ `(ii)` Find the probability drawing from a standard deck of cards and not getting a King of Hearts cardStart by finding the probability of drawing a King of Hearts cardfavourable outcomes`=``1` (there is only `1` King of Hearts card)total outcomes`=``52` (a standard deck has `52` cards)$$ \mathsf{P(King\:of\:Hearts)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{1}}{\color{#007DDC}{52}}$$ Substitute values Substitute this into the Complementary Probability formula$$ \mathsf{P(\dot{King\:of\:Hearts})} $$ `=` $$1-\mathsf{P(King\:of\:Hearts)}$$ Complementary Probability `=` $$1-\frac{1}{52}$$ Substitute values `=` $$\frac{52}{52}-\frac{1}{52}$$ `=` $$\frac{51}{52}$$ `(i) 1/2``(ii) 51/52` -
-
Question 4 of 8
4. Question
Find the probability of drawing from a standard deck of cards and NOT getting an Even-numbered Club.Write fractions in the format “a/b”- (47/52)
Hint
Help VideoCorrect
Fantastic!
Incorrect
Probability Formula
$$\mathsf{P(E)}=\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$Complementary Probability
$$\mathsf{P(\dot{E})}=1-\mathsf{P(E)}$$Start by finding the probability of drawing an Even-numbered Clubfavourable outcomes`=``5` (`2,4,6,8,10` of Clubs)total outcomes`=``52` (a standard deck has `52` cards)$$ \mathsf{P(Even\:Club)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{5}}{\color{#007DDC}{52}}$$ Substitute values Substitute this into the Complementary Probability formula$$ \mathsf{P(\dot{Even\:Club})} $$ `=` $$1-\mathsf{P(Even\:Club)}$$ Complementary Probability `=` $$1-\frac{5}{52}$$ Substitute values `=` $$\frac{52}{52}-\frac{5}{52}$$ `=` $$\frac{47}{52}$$ `47/52` -
Question 5 of 8
5. Question
The wheel below will give dollar prizes depending on where the arrow points. Find the probability of NOT getting $5.Write fractions in the format “a/b”- (7/8, ⅞)
Hint
Help VideoCorrect
Keep Going!
Incorrect
Probability Formula
$$\mathsf{P(E)}=\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$Complementary Probability
$$\mathsf{P(\dot{E})}=1-\mathsf{P(E)}$$Start by finding the probability of getting $5favourable outcomes`=``1` (`5`)total outcomes`=``8` (`5,10,20,50,100,100,100,100`)$$ \mathsf{P(5)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{1}}{\color{#007DDC}{8}}$$ Substitute values Substitute this into the Complementary Probability formula$$ \mathsf{P(\dot{5})} $$ `=` $$1-\mathsf{P(5)}$$ Complementary Probability `=` $$1-\frac{1}{8}$$ Substitute values `=` $$\frac{8}{8}-\frac{1}{8}$$ `=` $$\frac{7}{8}$$ `7/8` -
Question 6 of 8
6. Question
A `5`pm bus has a record of being on time `40` out of its last `50` trips. Pete catches this `5`pm bus on weekdays everyday and uses it to travel home. What is the probability for this bus NOT to be on time?Write fractions in the format “a/b”- (1/5)
Hint
Help VideoCorrect
Correct!
Incorrect
Probability Formula
$$\mathsf{P(E)}=\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$Complementary Probability
$$\mathsf{P(\dot{E})}=1-\mathsf{P(E)}$$Start by finding the probability for this bus to be on timefavourable outcomes`=``40` (bus was on time on `40` trips)total outcomes`=``50` (`50` total recorded trips)$$ \mathsf{P(on\:time)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{40}}{\color{#007DDC}{50}}$$ Substitute values `=` $$\frac{4}{5}$$ Substitute this into the Complementary Probability Formula$$ \mathsf{P(not\:on\:time)} $$ `=` $$1-\mathsf{P(on\:time)}$$ Complementary Probability `=` $$1-\frac{4}{5}$$ Substitute values `=` $$\frac{5}{5}-\frac{4}{5}$$ `=` $$\frac{1}{5}$$ `1/5` -
Question 7 of 8
7. Question
A box contains `8` Red cards, `3` Green cards, `12` Black cards and `7` Blue cards. Find the probability of drawing a card from this box at random and getting:`(i)` a non-Black card`(ii)` a non-Blue cardWrite fractions in the format “a/b”-
`(i)` (3/5)`(ii)` (23/30)
Hint
Help VideoCorrect
Great Work!
Incorrect
Probability Formula
$$\mathsf{P(E)}=\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$Complementary Probability
$$\mathsf{P(\dot{E})}=1-\mathsf{P(E)}$$`(i)` Find the probability of not drawing a Black cardStart by finding the probability of drawing a Black cardfavourable outcomes`=``12` (`12` Black)total outcomes`=``30` (`8` Red, `3` Green, `12` Black, `7` Blue)$$ \mathsf{P(Black)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{12}}{\color{#007DDC}{30}}$$ Substitute values `=` $$\frac{2}{5}$$ Substitute this into the Complementary Probability formula$$ \mathsf{P(\dot{Black})} $$ `=` $$1-\mathsf{P(Black)}$$ Complementary Probability `=` $$1-\frac{2}{5}$$ Substitute values `=` $$\frac{5}{5}-\frac{2}{5}$$ `=` $$\frac{3}{5}$$ `(ii)` Find the probability of not drawing a Blue cardStart by finding the probability of drawing a Blue cardfavourable outcomes`=``7` (`7` Blue)total outcomes`=``30` (`8` Red, `3` Green, `12` Black, `7` Blue)$$ \mathsf{P(Blue)} $$ `=` $$\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$ Probability Formula `=` $$\frac{\color{#e65021}{7}}{\color{#007DDC}{30}}$$ Substitute values Substitute this into the Complementary Probability formula$$ \mathsf{P(\dot{Blue})} $$ `=` $$1-\mathsf{P(Blue)}$$ Complementary Probability `=` $$1-\frac{7}{30}$$ Substitute values `=` $$\frac{30}{30}-\frac{7}{30}$$ `=` $$\frac{23}{30}$$ `(i) 3/5``(ii) 23/30` -
-
Question 8 of 8
8. Question
A coin collection consists of `\text(1/5)` Australian coins, `\text(13/100)` US coins and `\text(3/20)` UK coins. Find the probability of choosing a coin from this collection at random and getting:`(i)` a non-Australian coin`(ii)` a non-US coin`(iii)` a non-UK coinWrite fractions in the format “a/b”-
`(i)` (4/5)`(ii)` (87/100)`(iii)` (17/20)
Hint
Help VideoCorrect
Excellent!
Incorrect
Probability Formula
$$\mathsf{P(E)}=\frac{\color{#e65021}{\mathsf{favourable\:outcomes}}}{\color{#007DDC}{\mathsf{total\:outcomes}}}$$Complementary Probability
$$\mathsf{P(\dot{E})}=1-\mathsf{P(E)}$$`(i)` Find the probability of not choosing an Australian coin$$\mathsf{P(Aust)}=\frac{1}{5}$$$$ \mathsf{P(\dot{Aust})} $$ `=` $$1-\mathsf{P(Aust)}$$ Complementary Probability `=` $$1-\frac{1}{5}$$ Substitute values `=` $$\frac{5}{5}-\frac{1}{5}$$ `=` $$\frac{4}{5}$$ `(ii)` Find the probability of not choosing a US coin$$\mathsf{P(US)}=\frac{13}{100}$$$$ \mathsf{P(\dot{US})} $$ `=` $$1-\mathsf{P(US)}$$ Complementary Probability `=` $$1-\frac{13}{100}$$ Substitute values `=` $$\frac{100}{100}-\frac{13}{100}$$ `=` $$\frac{87}{100}$$ `(iii)` Find the probability of not choosing a UK coin$$\mathsf{P(UK)}=\frac{3}{20}$$$$ \mathsf{P(\dot{UK})} $$ `=` $$1-\mathsf{P(UK)}$$ Complementary Probability `=` $$1-\frac{3}{20}$$ Substitute values `=` $$\frac{20}{20}-\frac{3}{20}$$ `=` $$\frac{17}{20}$$ `(i) 4/5``(ii) 87/100``(iii) 17/20` -
Quizzes
- Simple Probability 1
- Simple Probability 2
- Simple Probability 3
- Simple Probability 4
- Complementary Probability 1
- Compound Events 1
- Compound Events 2
- Venn Diagrams (Non Mutually Exclusive)
- Independent Events 1
- Independent Events 2
- Dependent Events (Conditional Probability)
- Probability Tree (Independent) 1
- Probability Tree (Independent) 2
- Probability Tree (Dependent)