Graphing Reflections 1
Try VividMath Premium to unlock full access
Quiz summary
0 of 8 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- Answered
- Review
-
Question 1 of 8
1. Question
Given `f(x)=x^2-4x`
Sketch `y=-f(x)`.
Correct
Great Work!
Incorrect
Reflections around the `x`-axis have the property `\ \ y=-f(x)`Replace `y\rightarrow-y`.To sketch the transformed function `y=-f(x)`, start by sketching the original function `f(x)=x^2-4x`.Find the points where the graph of `f(x)=x^2-4x` crosses the `x`-axis.`0=` `x^2-4x` Set `y=0` to find the points where the graph crosses the `x`-axis. `0=` `color(green)(x)(x-4)` Factor out `color(green)(x)` from both terms. Solve `x=0`.`x=` `0` `y=` `(0)^2-4(0)` When `x=0`, solve for `y`. `y=` `0` `A(0,0)` Solve `x-4=0`.`x-4=` `0` `x=` `4` `y=` `(4)^2-4(4)` When `x=4`, solve for `y`. `y=` `16-16` `y=` `0` `B(4,0)` Find the vertex. Take the two `x` values and find the halfway point `((4+0)/2=2)`.`y=` `(2)^2-4(2)` Find the `y` value when `x=2`. `y=` `4-8` `y=` `-4` Vertex 1`(2,-4)` Sketch the original function `f(x)=x^2-4x` by using the points Vertex`(2,-4)`, `A(0,0)` and `B(4,0)`. Remember that this function is a concave up parabola (positive `x^2` function).Now sketch the transformed function `y=-f(x)` which is `f(x)=-(x^2-4x)=-x^2+4x`.Find the points where the graph of `f(x)=-x^2+4x` crosses the `x`-axis.`0=` `-x^2+4x` Set `y=0` to find the points where the graph crosses the `x`-axis. `0=` `-x(x-4)` Factor out a `-x` from both terms. Solve `-x=0`.`-x=` `0` `x=` `0` `y=` `(0)^2-4(0)` When `x=0`, solve for `y`. `y=` `0` `C(0,0)` Solve `x-4=0`.`x-4=` `0` `x=` `4` `y=` `(4)^2-4(4)` When `x=4`, solve for `y`. `y=` `16-16` `y=` `0` `D(4,0)` Find the vertex. Take the two `x` values and find the halfway point `((4+0)/2=2)`.`y=` `-(2)^2+4(2)` Find the `y` value when `x=2`. `y=` `-4+8` `y=` `4` Vertex 2`(2,4)` Sketch the transformed function `f(x)=-x^2+4x` by using the points Vertex 2`(2,4)`, `C(0,0)` and `D(4,0)`. Remember that this function is a concave down parabola (negative`x^2` function). -
Question 2 of 8
2. Question
Graph `y=(x-3)^2` reflected in the `x`-axis.
Correct
Great Work!
Incorrect
Reflections around the `x`-axis have the property `\ \ y=-f(x)`Replace `y\rightarrow-y`.To sketch the reflected function, take `y=(x-3)^2` and then replace `y` for `-y` and you will get: `y=-(x-3)^2`.Use a table of values to sketch `y=(x-3)^2` and `y=-(x-3)^2`.`x` `1` `2` `3` `4` `5` `(x-3)^2` `4` `1` `0` `1` `4` `-(x-3)^2` `-4` `-1` `0` `-1` `-4` Sketch the graph of `y=(x-3)^2` and `y=-(x-3)^2` using the table of values. -
Question 3 of 8
3. Question
Graph `y=2^x` reflected in the `y`-axis.
Correct
Great Work!
Incorrect
Reflections around the `y`-axis have the property `\ \ y=f(-x)`Replace `x\rightarrow-x`.To sketch the reflected function, take `y=2^x` and then
replace `x` for `-x` and you will get: `y=2^(-x)`.Use a table of values to sketch `y=2^x` and `y=2^-x`.`x` `-3` `-2` `-1` `0` `1` `2` `3` `2^x` `1/8` `1/4` `1/2` `1` `2` `4` `8` `2^(-x)` `8` `4` `2` `1` `1/2` `1/4` `1/8` Sketch the graph of `y=2^x` and `y=2^(-x)` using the table of values. -
Question 4 of 8
4. Question
Graph `y=(x-1)^2` reflected in the `y`-axis.
Correct
Great Work!
Incorrect
Reflections around the `y`-axis have the property `\ \ y=f(-x)`Replace `x\rightarrow-x`.To sketch the reflected function, take `y=(x-1)^2` and then replace `x` for `-x` and you will get: `y=(-x-1)^2`.Use a table of values to sketch `y=(x-1)^2` and `y=(-x-1)^2` which can also be written as:`y=(-1)^2` `(-x-1)^2 \rightarrow y=(x+1)^2``x` `-2` `-1` `0` `1` `2` `3` `(x-1)^2` `9` `4` `1` `0` `1` `4` `(x+1)^2` `1` `0` `1` `4` `9` `16` Sketch the graph of `y=(x-1)^2` and `y=(x+1)^2` using the table of values. -
Question 5 of 8
5. Question
Graph `y=\sqrt(x)` reflected in the `x`-axis.
Correct
Great Work!
Incorrect
Reflections around the `x`-axis have the property `\ \ y=-f(x)`Replace `y\rightarrow-y`.To sketch the reflected function, take `y=\sqrt(x)` and then
replace `y` for `-y` and you will get: `y=-\sqrt(x)`.Use a table of values to sketch `y=\sqrt(x)` and `y=-\sqrt(x)`.`x` `0` `1` `2` `3` `4` `5` `\sqrt(x)` `0` `1` `1.4` `1.7` `2` `2.2` `-\sqrt(x)` `0` `-1` `-1.4` `-1.7` `-2` `-2.2` Sketch the graph of `y=\sqrt(x)` and `y=-\sqrt(x)` using the table of values. -
Question 6 of 8
6. Question
Given `f(x)=x^3`
Sketch `y=-f(x)`
Correct
Great Work!
Incorrect
Reflections around the `x`-axis have the property `\ \ y=-f(x)`Replace `y\rightarrow-y`.To sketch the reflected function, take `y=x^3` and then
replace `y` for `-y` and you will get: `y=-x^3`Use a table of values to sketch `y=x^3` and `y=-x^3``x` `-2` `-1` `0` `1` `2` `x^3` `-8` `-1` `0` `1` `8` `-x^3` `8` `1` `0` `-1` `-8` Sketch the graph of `y=x^3` and `y=-x^3` using the table of values. -
Question 7 of 8
7. Question
Given `f(x)=x^3 +1`.
Sketch `y=f(-x)`
Correct
Great Work!
Incorrect
Reflections around the `y`-axis have the property `\ \ y=f(-x)`Replace `x\rightarrow-x`.To sketch the transformed function `y=f(-x)`, start by sketching the original function `f(x)=x^3 +1`.Find the points where the graph of `f(x)=x^3 +1` crosses the `y`-axis.Solve `x=0`.`x=` `0` `y=` `(0)^3 +1` When `x=0`, solve for `y`. `y=` `1` `A(0,1)` Solve `x^3 + 1=0`.`x^3 + 1=` `0` `x=` `-1` `y=` `(-1)^3 + 1` When `x=-1`, solve for `y`. `y=` `-1+1` `y=` `0` `B(-1,0)` Sketch the original function `f(x)=x^3 +1` by using the points`A(0,1)` and `B(-1,0)`. Remember that this function is a cubic function (positive `x^3` function).Now sketch the transformed function `y=f(-x)` which is `f(-x)=(-x)^3 + 1=-x^3 + 1`.Find the points where the graph of `f(-x)=-x^3 + 1` crosses the `y`-axis.Solve `-x=0`.`-x=` `0` `x=` `0` `y=` `(0)^3 + 1` When `x=0`, solve for `y`. `y=` `1` `C(0,1)` Solve `-x^3 + 1=0`.`-x^3 + 1=` `0` `x=` `1` `y=` `-(1)^3 + 1` When `x=1`, solve for `y`. `y=` `-1+1` `y=` `0` `D(1,0)` Sketch the transformed function `f(-x)=-x^3+1` by using the points `C(0,1)` and `D(1,0)`. Remember that this is a negative cubic function. -
Question 8 of 8
8. Question
Given `f(x)=x^2+4x`.
Sketch `y=f(-x)`
Correct
Great Work!
Incorrect
Reflections around the `y`-axis have the property `\ \ y=f(-x)`.Replace `x\rightarrow-x`.To sketch the transformed function `y=f(-x)`, start by sketching the original function `f(x)=x^2 + 4x`.Find the points where the graph of `f(x)=x^2+4x` crosses the `y`-axis.`0=` `x^2+4x` Set `y=0` to find the points where the graph crosses the `x`-axis. `0=` `color(green)(x)(x+4)` Factor out an `color(green)(x)` from both terms. Solve `x=0`.`x=` `0` `y=` `(0)^2+4(0)` When `x=0`, solve for `y`. `y=` `0` `A(0,0)` Solve `x+4=0`.`x+4=` `0` `x=` `-4` `y=` `(-4)^2+4(-4)` When `x=-4`, solve for `y`. `y=` `16-16` `y=` `0` `B(-4,0)` Find the vertex. Take the two `x` values and find the halfway point `((-4+0)/2=-2)`.`y=` `(-2)^2+4(-2)` Find the `y` value when `x=-2`. `y=` `4-8` `y=` `-4` Vertex 1`(-2,-4)` Sketch the original function `f(x)=x^2+4x` by using the points Vertex`(-2,-4)`, `A(0,0)` and `B(-4,0)`. Remember that this function is a concave up parabola (positive `x^2` function).Now sketch the transformed function `y=f(-x)` which is `f(-x)=(-x)^2+4(-x)=x^2-4x`.Find the points where the graph of `f(-x)=x^2-4x` crosses the `x`-axis.`0=` `x^2-4x` Set `y=0` to find the points where the graph crosses the `x`-axis. `0=` `color(green)(x)(x-4)` Factor out an `color(green)(x)` from both terms. Solve `x=0`.`x=` `0` `y=` `(0)^2-4(0)` When `x=0`, solve for `y`. `y=` `0` `C(0,0)` Solve `x-4=0`.`x-4=` `0` `x=` `4` `y=` `(4)^2-4(4)` When `x=4`, solve for `y`. `y=` `16-16` `y=` `0` `D(4,0)` Find the vertex. Take the two `x` values and find the halfway point `((4+0)/2=2)`.`y=` `(2)^2-4(2)` Find the `y` value when `x=2`. `y=` `4-8` `y=` `-4` Vertex 2`(2,-4)` Sketch the transformed function `f(-x)=x^2-4x` by using the points Vertex 2 `(2,-4)`, `C(0,0)` and `D(4,0)`. Remember that this function is a concave up parabola (positive `x^2` function).
Quizzes
- Vertical Translations (Shifts) 1
- Vertical Translations (Shifts) 2
- Vertical Translations (Shifts) from a Point
- Horizontal Translations (Shifts) 1
- Horizontal Translations (Shifts) from a Point
- Horizontal Translations (Shifts) from a Graph
- Horizontal and Verticals Translations (Shifts) from a Graph
- Sketch a Graph using Translations (Shifts)
- Write the Equation from a Graph
- Write the Equation from Translations (Shifts) 1
- Vertical Dilations (Stretch/Shrink)
- Horizontal Dilations (Stretch/Shrink) 1
- Horizontal Dilations (Stretch/Shrink) 2
- Horizontal Dilations (Stretch/Shrink) – Scale Factor
- Horizontal and Vertical Dilations (Stretch/Shrink) 1
- Horizontal and Vertical Dilations (Stretch/Shrink) 2
- Horizontal and Vertical Dilations (Stretch/Shrink) 3
- Graphing Reflections 1
- Graphing Reflections 2
- Reflection with Rotation
- Combinations of Transformations: Order
- Combinations of Transformations: Coordinates
- Combinations of Transformations: Find Equation 1
- Combinations of Transformations: Find Equation 2
- Combinations of Transformations: Find Equation 3