Multiply Radical Expressions 2
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 5 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- 5
- Answered
- Review
-
Question 1 of 5
1. Question
Simplify
`sqrt3 xx sqrt5`
Correct
Great Work!
Incorrect
Multiplication Property of Square Roots
`sqrt(ab)=sqrt(a)*sqrt(b)`Apply the multiplication property of square roots to simplify the expression`sqrt3 xx sqrt5` `=` `sqrt(3 xx 5)` Multiply `=` `sqrt(15)` `sqrt(15)` -
Question 2 of 5
2. Question
Simplify
`4sqrt2 xx 6sqrt2`
Correct
Fantastic!
Incorrect
Multiplication Property of Square Roots
`sqrt(ab)=sqrt(a) xx sqrt(b)`Multiply the coefficients and then the radicands of each term`color(royalblue)(4)color(forestgreen)(sqrt2) xx color(royalblue)(6)color(forestgreen)(sqrt2)` Multiply numerical coefficients`color(royalblue)(4 xx 6)` `=` `24` Multiply the radicands`color(forestgreen)(sqrt2 xx sqrt2)` `=` `sqrt(4)` Combine the products`=` `24 xx sqrt(4)` Simplify `=` `24 xx 2` `4` is a perfect square `=` `48` `48` -
Question 3 of 5
3. Question
Simplify
`6sqrt8 xx 2sqrt6`
Correct
Well Done!
Incorrect
Multiplication Property of Square Roots
`sqrt(ab)=sqrt(a) xx sqrt(b)`Multiply the coefficients and then the radicands of each term`color(royalblue)(6)color(forestgreen)(sqrt8) xx color(royalblue)(2)color(forestgreen)(sqrt6)` Multiply numerical coefficients`color(royalblue)(6 xx 2)` `=` `12` Multiply the radicands`color(forestgreen)(sqrt8 xx sqrt6)` `=` `sqrt(48)` Combine the products`=` `12 xx sqrt(48)` Factor by finding smaller multiples of `48` `=` `12 xx sqrt(16) xx sqrt(3)` Apply the Multiplication Property `=` `12 xx 4 xx sqrt(3)` `16` is a perfect square `=` `48sqrt(3)` `48sqrt(3)` -
Question 4 of 5
4. Question
Simplify
`8sqrt3 xx 3sqrt7`
Correct
Excellent!
Incorrect
Multiplication Property of Square Roots
`sqrt(ab)=sqrt(a) xx sqrt(b)`Multiply the coefficients and then the radicands of each term`color(royalblue)(8)color(forestgreen)(sqrt3) xx color(royalblue)(3)color(forestgreen)(sqrt7)` Multiply numerical coefficients`color(royalblue)(8 xx 3)` `=` `24` Multiply the radicands`color(forestgreen)(sqrt3 xx sqrt7)` `=` `sqrt(21)` Combine the products`=` `24 xx sqrt(21)` `=` `24sqrt(21)` `24sqrt(21)` -
Question 5 of 5
5. Question
Simplify
`sqrt28 xx sqrt3`
Correct
Nice Work!
Incorrect
Multiplication Property of Square Roots
`sqrt(ab)=sqrt(a)*sqrt(b)`Apply the multiplication property of square roots to simplify the expression`sqrt28 xx sqrt3` `=` `sqrt(28 xx 3)` Multiply `=` `sqrt(84)` `=` `sqrt(4 xx 21)` Factor by finding smaller multiples of `84` `=` `sqrt(4) xx sqrt(21)` Apply the Multiplication Property `=` `2 xx sqrt(21)` `4` is a perfect square `=` `2sqrt(21)` `2sqrt(21)`
Quizzes
- Simplify Square Roots 1
- Simplify Square Roots 2
- Simplify Square Roots 3
- Simplify Square Roots 4
- Simplify Radicals with Variables 1
- Simplify Radicals with Variables 2
- Simplify Radicals with Variables 3
- Rewriting Entire and Mixed Radicals 1
- Rewriting Entire and Mixed Radicals 2
- Add and Subtract Radical Expressions (Basic) 1
- Add and Subtract Radical Expressions (Basic) 2
- Add and Subtract Radical Expressions (Basic) 3
- Add and Subtract Radical Expressions 1
- Add and Subtract Radical Expressions 2
- Add and Subtract Radical Expressions 3
- Multiply Radical Expressions 1
- Multiply Radical Expressions 2
- Multiply Radical Expressions 3
- Multiply Radical Expressions 4
- Divide Radical Expressions 1
- Divide Radical Expressions 2
- Divide Radical Expressions 3
- Multiply and Divide Radical Expressions
- Simplify Radical Expressions using the Distributive Property 1
- Simplify Radical Expressions using the Distributive Property 2
- Simplify Radical Expressions using the Distributive Property 3
- Simplify Binomial Radical Expressions using the FOIL Method 1
- Simplify Binomial Radical Expressions using the FOIL Method 2
- Rationalizing the Denominator 1
- Rationalizing the Denominator 2
- Rationalizing the Denominator 3
- Rationalizing the Denominator 4
- Rationalizing the Denominator using Conjugates