Piecewise Functions
Try VividMath Premium to unlock full access
Time limit: 0
Quiz summary
0 of 4 questions completed
Questions:
- 1
- 2
- 3
- 4
Information
–
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Loading...
- 1
- 2
- 3
- 4
- Answered
- Review
-
Question 1 of 4
1. Question
Graph the function$$f(x)=\begin{cases}2x+1, x<-1\\1-x^2,x≥-1\end{cases}$$Hint
Help VideoCorrect
Excellent!
Incorrect
PieceWise functions are a set of functions that share a common pointUse a table of values and test several values of `x` to get the value of `y``x` `-2` `-1` `0` `1` `2` `y` Substitute the values of `x` to the respective functions to get their `y` values`f(x)` `=` $$\begin{cases}2x+1, x<-1\\1-x^2,x≥-1\end{cases}$$ `x=-2``f(x)` `=` `2x+1` 1st function `f(-2)` `=` `2(-2)+1` `=` `-4+1` `=` `-3` `x=-1``f(x)` `=` `2x+1` 1st function `f(-1)` `=` `2(-1)+1` `=` `-2+1` `=` `-1` `f(x)` `=` `1-x^2` 2nd function `f(-1)` `=` `1-(-1)^2` `=` `1-1` `=` `0` `x=0``f(x)` `=` `1-x^2` 2nd function `f(0)` `=` `1-(0)^2` `=` `1` `x=1``f(x)` `=` `1-x^2` 2nd function `f(1)` `=` `1-(1)^2` `=` `1-1` `=` `0` `x=2``f(x)` `=` `1-x^2` 2nd function `f(2)` `=` `1-(2)^2` `=` `1-4` `=` `-3` `x` `-2` `-1` `0` `1` `2` `y` `-3` `-1,0` `1` `0` `-3` Next, plot the points on the graph.Use empty dots for less than (`<`) values and filled dots for greater than or equal (`≥`) valuesFinally, form the curve by connecting the points -
Question 2 of 4
2. Question
Graph the function$$f(x)=\begin{cases}x^2, x≤0\\[0.3em] \frac{1}{2}x,x>0\end{cases}$$Hint
Help VideoCorrect
Fantastic!
Incorrect
PieceWise functions are a set of functions that share a common pointUse a table of values and test several values of `x` to get the value of `y``x` `-2` `-1` `0` `1` `2` `y` Substitute the values of `x` to the respective functions to get their `y` values`f(x)` `=` $$\begin{cases}x^2, x≤0\\[0.3em] \frac{1}{2}x,x>0\end{cases}$$ `x=-2``f(x)` `=` `x^2` 1st function `f(-2)` `=` `(-2)^2` `=` `4` `x=-1``f(x)` `=` `x^2` 1st function `f(-1)` `=` `(-1)^2` `=` `1` `x=0``f(x)` `=` `x^2` 1st function `f(0)` `=` `0^2` `=` `0` `f(x)` `=` `1/2x` 2nd function `f(0)` `=` `1/2(0)` `=` `0` `x=1``f(x)` `=` `1/2x` 2nd function `f(1)` `=` `1/2(1)` `=` `1/2` `x=2``f(x)` `=` `1/2x` 2nd function `f(2)` `=` `1/2(2)` `=` `1` `x` `-2` `-1` `0` `1` `2` `y` `4` `1` `0,0` `1/2` `1` Next, plot the points on the graph.Use empty dots for greater than (`>`) values and filled dots for less than or equal (`≤`) valuesFinally, form the curve by connecting the points -
Question 3 of 4
3. Question
Graph the function$$f(x)=\begin{cases}x^2, x≤1\\[0.3em] 2-x,x>1\end{cases}$$Hint
Help VideoCorrect
Keep Going!
Incorrect
PieceWise functions are a set of functions that share a common pointUse a table of values and test several values of `x` to get the value of `y``x` `-2` `-1` `0` `1` `2` `y` Substitute the values of `x` to the respective functions to get their `y` values`f(x)` `=` $$\begin{cases}x^2, x≤1\\[0.3em] 2-x,x>1\end{cases}$$ `x=-2``f(x)` `=` `x^2` 1st function `f(-2)` `=` `(-2)^2` `=` `4` `x=-1``f(x)` `=` `x^2` 1st function `f(-1)` `=` `(-1)^2` `=` `1` `x=0``f(x)` `=` `x^2` 1st function `f(-1)` `=` `(0)^2` `=` `0` `x=1``f(x)` `=` `x^2` 1st function `f(1)` `=` `1^2` `=` `1` `f(x)` `=` `2-x` 2nd function `f(0)` `=` `2-1` `=` `1` `x=2``f(x)` `=` `2-x` 2nd function `f(2)` `=` `2-2` `=` `0` `x` `-2` `-1` `0` `1` `2` `y` `4` `1` `0` `1,1` `0` Next, plot the points on the graph.Use empty dots for greater than (`>`) values and filled dots for less than or equal (`≤`) valuesFinally, form the curve by connecting the points -
Question 4 of 4
4. Question
Graph the function$$f(x)=\begin{cases}x^2, x≤1\\[0.3em] x-1,x>1\end{cases}$$Hint
Help VideoCorrect
Great Work!
Incorrect
PieceWise functions are a set of functions that share a common pointUse a table of values and test several values of `x` to get the value of `y``x` `-1` `0` `1` `2` `3` `y` Substitute the values of `x` to the respective functions to get their `y` values`f(x)` `=` $$\begin{cases}x^2, x≤1\\[0.3em] x-1,x>1\end{cases}$$ `x=-1``f(x)` `=` `x^2` 1st function `f(-1)` `=` `(-1)^2` `=` `1` `x=0``f(x)` `=` `x^2` 1st function `f(-1)` `=` `(0)^2` `=` `0` `x=1``f(x)` `=` `x^2` 1st function `f(1)` `=` `1^2` `=` `1` `f(x)` `=` `x-1` 2nd function `f(1)` `=` `1-1` `=` `0` `x=2``f(x)` `=` `x-1` 2nd function `f(2)` `=` `2-1` `=` `1` `x=3``f(x)` `=` `x-1` 2nd function `f(3)` `=` `3-1` `=` `2` `x` `-1` `0` `1` `2` `3` `y` `1` `0` `1,0` `1` `2` Next, plot the points on the graph.Use empty dots for greater than (`>`) values and filled dots for less than or equal (`≤`) valuesFinally, form the curve by connecting the points